Amt der Tiroler Landesregierung Waldschutz – Luftgüte

Juni 2009

Auftraggeber: Der Landeshauptmann für den Vollzug von Bundesgesetzen,

> Die Landesregierung für den Vollzug von Landesgesetzen, vertreten durch das Amt der Tiroler Landesregierung,

Abteilung Waldschutz - Luftgüte, Tel.: 0512/508/DW 4611

6020 Innsbruck, Bürgerstrasse 36

Abteilung Umweltschutz, Tel.: 0512/508/DW 3452

Ausstellungsdatum: 14. September 2009

Für die Abteilung Waldschutz – Luftgüte:

Dr. Weber Andreas

Weitere Informationsangebote:

\Rightarrow	Teletext des ORF	Seite 782, 783
\Rightarrow	Homepage des Landes Tirol im Internet	www.tirol.gv.at/luft

Hinweis: Die Verwendung einzelner Daten ohne Berücksichtigung aller relevanten Messergebnisse kann zu einer Verfälschung der Aussage führen. Eine auszugsweise Vervielfältigung des Luftgüteberichtes ist daher ohne schriftliche Genehmigung der Abteilung Waldschutz/Fachbereich Luftgüte nicht gestattet. Alle erhobenen Luftgütedaten sind kontrolliert und wurden entsprechend den österreichischen Qualitätsanforderungen erfasst. Zur Beurteilung der Messergebnisse wurden auch Wetterdaten der Zentralanstalt für Meteorologie und Geodynamik herangezogen.

Inhaltsverzeichnis

Eriauterung über die Bedeutung der verwendeten Symbole	3
Lage der Messstationen und Bestückungsliste	4
Kurzübersicht über die Einhaltung von Grenzwerten	5
Kurzbericht	6
Stationsvergleich	7
Monatsauswertung der Stationen	
Höfen – Lärchbichl	10
Heiterwang – Ort / B179	12
Imst – Imsterau	
Imst – A12	18
Karwendel West	21
Innsbruck – Andechsstrasse (Reichenau)	23
Innsbruck – Fallmerayerstrasse (Zentrum)	26
Innsbruck – Sadrach	30
Nordkette	32
Mutters – Gärberbach A13	35
Hall in Tirol – Sportplatz	38
Vomp – Raststätte A12	41
Vomp – An der Leiten	44
Zillertaler Alpen	47
Brixlegg – Innweg	49
Kramsach – Angerberg	52
Kundl – A12	55
Wörgl – Stelzhamerstrasse	58
Kufstein – Praxmarerstrasse	61
Kufstein – Festung	64
Lienz – Amlacherkreuzung	
Lienz – Sportzentrum	
Beurteilungsunterlagen	
aus Gesetzen, Verordnungen und Richtlinien	72
IC I Überenber Herren	
IG-L Überschreitungen Auflistung der Überschreitungen nach IG-L	7.4
Authstung der Oberschleitungen nach IG-L	/4

Erläuterungen über die Bedeutung der verwendeten Symbole

SO2 Schwefeldioxid

PM2.5 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM2.5 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 grav. Feinstaub gemäß IG-L (High Volume Sampler und PM10 Kopf gesammelte

Tagesproben; durch konditionierte Wägung ermittelter Wert.)

PM10 kont. Feinstaub gemäß IG-L (Mittels kontinuierlich registrierender Staubmonitore und

PM10 Kopf gemessene Werte, multipliziert mit dem Defaultfaktor 1,3 oder einem

Standortfaktor, wenn dieser vorhanden ist.)

NO Stickstoffmonoxid NO2 Stickstoffdioxid

O3 Ozon

CO Kohlenmonoxid

HMW Halbstundenmittelwert

max HMW / HMW_MAX maximaler Halbstundenmittelwert max 1-MW / MW1_MAX Maximaler Einstundenmittelwert

max 01-M / MW_01_MAX Maximaler Einstundenmittelwert (stündlich gleitend)

max 3-MW Maximaler Dreistundenmittelwert
max 8-MW / MW8 MAX Maximaler Achtstundenmittelwert

max 08-M / MW_08_MAX Maximaler Achtstundenmittelwert (gleitend aus Einstundenmittelwerten)

TMW / max. TMW Tagesmittelwert / Maximaler Tagesmittelwert

MMW Monatsmittelwert

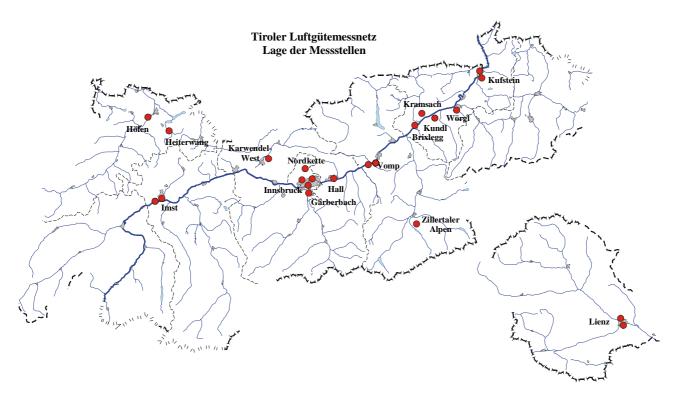
Gl.JMW Gleitender Jahresmittelwert

Keine Berechnung eines Tagesmittelwertes, da weniger

als 40 Halbstundenmittelwerte vorhanden (lt. ÖNORM 5866)

 mg/m^3 Milligramm pro Kubikmeter $\mu g/m^3$ Mikrogramm pro Kubikmeter

% Prozent = Anzahl Teile in hundert Teilen
% Promille = Anzahl Teile in tausend Teilen


VDI Verein Deutscher Ingenieure

ÖAW Österreichische Akademie der Wissenschaften

EU Europäische Union

IG-L Immissionsschutzgesetz Luft (BGBl. 115/97 i.d.g.F.)

n.a. nicht ausgewertet

BESTÜCKUNGSLISTE													
STATIONSBEZEICHNUNG	SEEHÖHE	SO2	PM10/PM2.5 ¹⁾	NO	NO2	О3	СО						
Höfen – Lärchbichl	877 m	-	-/-	-	-	•	-						
Heiterwang – Ort / B179	985 m	-	•/-	•	•	-	-						
Imst – Imsterau	717 m	-	•/-	•	•	-	-						
Imst – A12	719 m	-	•/-	•	•	-	-						
Karwendel – West	1749 m	-	-/-	-	-	•	-						
Innsbruck – Andechsstrasse	570 m	-	•/-	•	•	•	-						
Innsbruck – Fallmerayerstrasse	577 m	•	•/•	•	•	-	•						
Innsbruck – Sadrach	678 m	-	-/-	-	-	•	-						
Nordkette	1958 m	-	-/-	•	•	•	-						
Mutters – Gärberbach A13	688 m	-	•/-	•	•	-	-						
Hall in Tirol – Sportplatz	558 m	-	•/-	•	•	-	-						
Vomp – Raststätte A12	557 m	-	•/-	•	•	-	-						
Vomp – An der Leiten	543 m	-	•/-	•	•	-	-						
Zillertaler Alpen	1955 m	-	-/-	-	-	•	-						
Brixlegg – Innweg	519 m	•	•/-	-	-	-	-						
Kramsach – Angerberg	602 m	-	•/-	•	•	•	-						
Kundl – A12	507 m	-	-/-	•	•	-	-						
Wörgl – Stelzhamerstrasse	508 m	-	•/-	•	•	-	-						
Kufstein – Praxmarerstrasse	498 m	•	•/-	•	•	-	-						
Kufstein – Festung	550 m	-	-/-	-	-	•	-						
Lienz – Amlacherkreuzung	675 m	•	•/-	•	•	-	•						
Lienz – Sportzentrum	677 m	-	-/-	-	-	•	-						

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Kurzübersicht über die Einhaltung von Alarm-, Grenz- und Zielwerten Juni 2009

Bezeichnung der Messstelle	SO2	PM10 ²⁾	NO	NO2 1)	О3	CO
HÖFEN					ZP	
Lärchbichl		1			М	
HEITERWANG						
Ort / B179						
IM ST				Ö		
Imsterau						
IM ST				Ö		
A12						
KARWENDEL					ZP	
West					М	
INNSBRUCK					P	
Andechsstrasse						
INNSBRUCK				Ö		
Fallmeray erstrasse		1				
INNSBRUCK					ZP	
Sadrach					M	
NORDKETTE		1			ZP	
NORDRETTE					M	
MUTTERS				Ö		
Gärberbach A13						
HALL IN TIROL		IP		Ö		
Sportplatz						
VOMP				Ö		
Raststätte A12						
VOMP				Ö		
An der Leiten						
ZILLERTALER					ZP	
ALPEN					M	
BRIXLEGG						
Innweg						
KRAMSACH					ZP	
Angerberg					M	
KUNDL				Ö		
A12						
WÖRGL						
Stelzhamerstrasse						
KUFSTEIN						
Praxmarerstrasse						
KUFSTEIN					ZP	
Festung					М	
LIENZ				Ö		
Amlacherkreuzung						
LIENZ					ZP	
Sportzentrum					М	
Sportzontium					141	

	Grenzwerte und Zielwerte der nachstehenden Beurteilungsgrundlagen eingehalten
M	ÖAW: Überschreitung der Immissionsgrenzkonzentration für den Menschen bei Stickstoff-, Schwefeldioxid und Ozon
P	ÖAW: Überschreitung der Immissionsgrenzkonzentration für die Vegetation bei Ozon
Ö	ÖAW: Überschreitung der Immissionsgrenzkonzentration für Ökosysteme bei Stickstoffdioxid
V	Überschreitung der Grenzwerte nach VDI-Richtlinie 2310
F	Überschreitung der Grenzwerte der 2. VO gegen forstschädliche Luftverunreinigungen
IZ	Überschreitung von Zielwerten für Stickstoffdioxid oder Schwefeldioxid (BGBl. II Nr. 298/2001) sowie Zielwert zum
12	Schutz von Ökosystemen und Pflanzen (gilt nur für die Messstellen Nordkette und Kramsach/Angerberg).
	Überschreitung des im IG-L genannten Tageszielwertes von 50µg/m³ für PM10. Der PM10-Tages grenzwert gem.
IP	Immissionsschutzgesetz Luft ist eine Perzentilregelung – pro Kalenderjahr sind derzeit bis zu 30 Überschreitungen
	erlaubt – Überschreitungen des Grenzwertes sind daher im Monatsbericht nicht auszuweisen.
Z	Überschreitung des langfristigen Zieles zur menschlichen Gesundheit für Ozon (gilt ab 2010)
	Überschreitung von Grenzwerten für Schwefeldioxid, Stickstoffdioxid oder Kohlenmonoxid gem.
IG	Immissionsschutzgesetz Luft (BGBI. 62/2001) zum Schutz der menschlichen Gesundheit bzw. Überschreitung der
	Informationsschwelle gemäß Ozongesetz.
,	Überschreitung von Alarmwerten für Schwefeldioxid bzw. Stickstoffdioxid gemäss IG-L bzw. der Alarmschwelle
•	gemäss Ozongesetz
1)	Der Jahresmittelwert wird in der Kurzübersicht nicht beurteilt
2)	An den Stationen Imst/Imsterau, Imst/A 12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz,
2)	Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM 10 gravimetrisch gemessen
	Schadstoff wird nicht gemessen

Kurzbericht für den Juni 2009

Messnetz

Das Land Tirol betreibt gemäß Immissionsschutzgesetz Luft (IG-L; BGBl. I 115/1997), dem Ozongesetz (BGBl. 210/1992) sowie der Messkonzeptverordnung zum Immissionsschutzgesetz Luft (BGBl. II 358/1998) – jeweils in den geltenden Fassungen - ein Luftgütemessnetz mit insgesamt 22 Messstationen. Zudem werden die Vorgaben gem. 2. Verordnung gegen forstschädliche Luftverunreinigungen (BGBl. II 199/1984) mit vollzogen.

Dieser Bericht enthält Informationen über die gemessenen Luftschadstoffe Kohlenmonoxid (CO), Schwefeldioxid (SO2), Stickoxide (NO und NO2) und Ozon (O3) sowie für Feinstaub (PM10 und PM2,5) über die Verfügbarkeit der Messdaten, und bezieht die Ergebnisse auf die in o.a. enthaltenen gesetzlichen Grenz- und Zielwerte österreichischer Gesetze sowie auf anerkannte wirkungsbezogene Immissionsgrenzkonzentrationen laut ÖAW. Die Ergebnisse von Blei/Arsen/Nickel/Cadmium und BaP (Benzo-a-Pyren) im PM10, von Benzol sowie von Staubniederschlagsmessungen sind in den Jahresberichten veröffentlicht, da für diese Schadstoffe lediglich Grenz- bzw. Zielwerte auf Jahresmittelwertbasis zu prüfen sind.

Klimaübersicht – Zentralanstalt für Meteorologie und Geodynamik, Regionalstelle für Tirol und Vorarlberg:

Der Juni entsprach temperaturmäßig dem langjährigen Schnitt. Nur im Süden Osttirols und in südlichen Teilen des Oberlandes war es um ein Grad zu warm. Die höchste gemessene Temperatur lag bei 31,9 Grad in Innsbruck, am 1. des Monats gab es in St. Jakob im Defereggen hingegen noch einen Frosttag (Minimum -0,4 Grad). Sommerlich warm war es vor allem um die Monatsmitte. In der letzten Dekade folgte aber ein markanter Kaltlufteinbruch, der es bis unter 2000 Meter schneien ließ, am Brunnenkogel (3440m) wurden am 22.6. -9,1 Grad gemessen. Es gab mit 7 Sommertagen (d.h. Höchstwert von mindestens 25 Grad) um drei weniger als gewöhnlich.

Es regnete außergewöhnlich oft. Zwischen 22 und 28 Regentage wurden in Nordtirol registriert. Die gleiche Anzahl gab es im Juni 2007, davor aber lange nicht mehr. In vielen Gebieten bleiben die Niederschlagsmengen aber im Rahmen, 25 bis 75% zu viel an Regen gab es hingegen nahe der bayerischen Grenze und in einem Gutteil des Unterlands. Bis zu 30% zu trocken war es hingegen im Bereich der Ötztaler Alpen und in Teilen Osttirols.

Mit nur knapp über 1000 Blitze gab es so wenig Einschläge in Tirol in einem Juni wie seit 1995 nicht mehr, ein blitzreicher Juni wie der Juni 2006 hat über 17.000 Blitze.

Auch bei den Sonnenstunden war die Ausbeute bescheiden, meist wurden nur 60 bis 85% des Solls an Sonnenschein erreicht, so wenig wie seit 1995 nicht mehr.

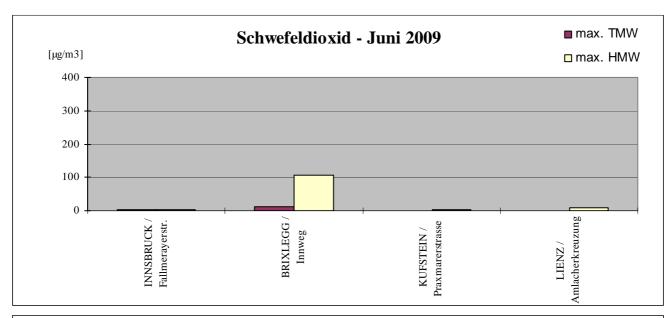
Luftschadstoffübersicht

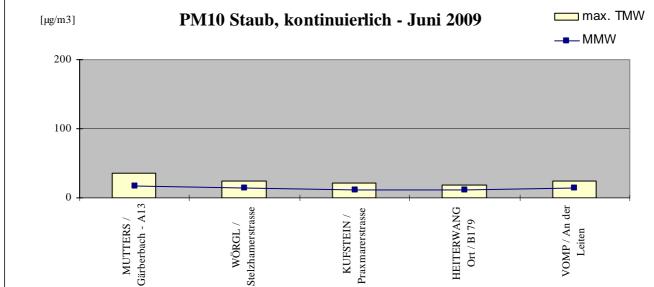
Im Vergleich zum Vormonat änderte sich wenig an der Luftschadstoffbelastung. Die Konzentrationen lagen auf einem tiefen Niveau. Dies galt auch für die Schadstoffkomponente Ozon, was eine Folge der trüben und feuchten Witterung war.

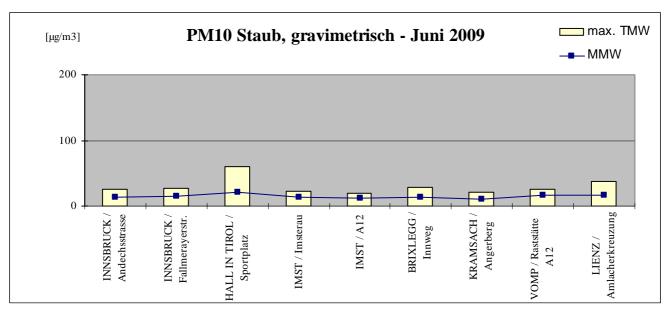
Bei **Schwefeldioxid** lagen die Monatsmittelwerte bei allen Messstellen im niedrigen einstelligen Konzentrationsbereich. Bei den Kurzzeitwerten wurden lediglich an der Messstelle BRIXLEGG/Innweg einzelne höhere Kurzzeitwerte gemessen. Grenzwertüberschreitungen gemäß IG-L (Immissionsschutzgesetz-Luft) sowie zweiter Verordnung gegen forstschädliche Luftverunreinigungen lagen jedoch nicht vor.

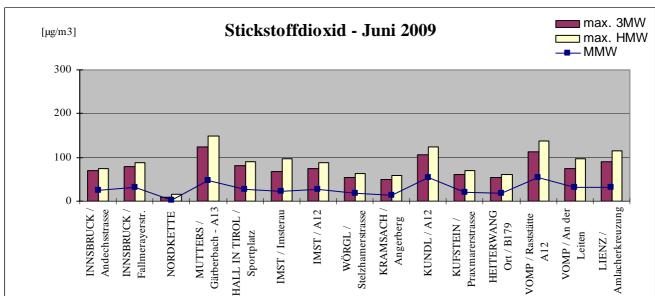
Bei PM10 wurde mit einem maximalen Tagesmittelwert von $60 \,\mu\text{g/m}^3$ an der Messstelle HALL IN TIROL/Sportplatz der Grenzwert gemäß IG-L von $50 \,\mu\text{g/m}^3$ überschritten. Die Überschreitung konnte auf eine verschmutzte Fahrbahn im Bereich der Messstelle aufgrund archäologischer Ausgrabungen zurückgeführt werden, was ein einmaliges Ereignis darstellen sollte. An den restlichen Standorten lagen die maximalen Tagesmittelwerte deutlich unterhalb des Grenzwertes.

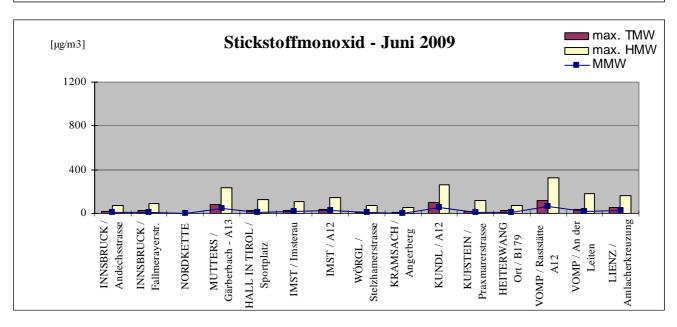
Bei **Stickstoffmonoxid** lag der maximale Halbstundenmittelwert mit $324 \,\mu\text{g/m}^3$ sowie der maximale Tagesmittelwert mit $119 \,\mu\text{g/m}^3$ (beide gemessen an der Messstelle VOMP/Raststätte A12) deutlich unterhalb der Kriterien gemäß der VDI-Richtlinie $2310 \, (1000 \,\mu\text{g/m}^3 \, \text{als Halbstundenmittelwert sowie } 500 \,\mu\text{g/m}^3 \, \text{als Tagesmittelwert!}).$

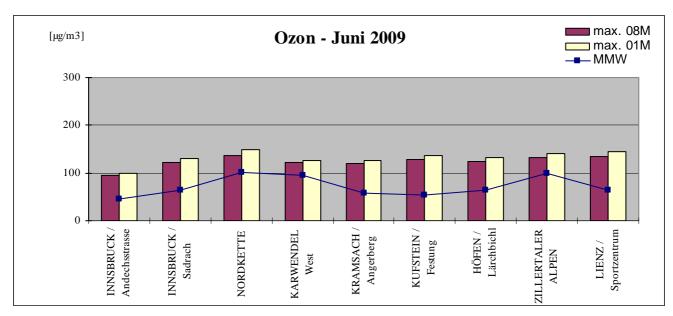

Der höchste Halbstundenmittelwert entfiel bei **Stickstoffdioxid** auf die Messstelle MUTTERS/Gärberbach A13, mit 148 μ g/m³ lag dabei aber keine Grenzwertverletzung gemäß IG-L (200 μ g/m³) vor. Der Zielwert von 80 μ g/m³ als Tagesmittelwert wurde mit einem Maximalwert von 72 μ g/m³ an der Messstelle KUNDL/A12 ebenfalls unterschritten. Das Luftqualitätskriterium der ÖAW (Österreichische Akademie der Wissenschaften) zum Schutz der Vegetation war wie im Vormonat an 9 der insgesamt 15 Messstandorte überschritten.

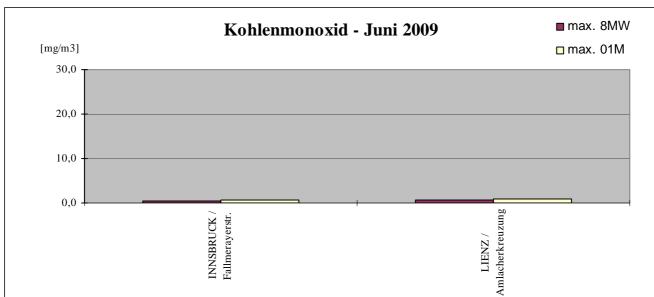

Das geringe Strahlungsangebot wirkte sich begrenzend auf die **Ozon**bildung aus. Dennoch wurden bei allen Messstellen mit Ausnahme der Messstelle INNSBRUCK/Andechsstraße Zielwertüberschreitungen nach dem Ozongesetz ($120\,\mu g/m^3$ als Achtstundenmittelwert) festgestellt. Dieser Wert darf im Mittel über drei Jahre an nicht mehr als 25 Tagen pro


Kalenderjahr überschritten werden und gilt ab 2010. Die Anzahl der Überschreitungen blieb auch an den exponierten Bergstationen mit maximal 8 Zielwertüberschreitungen an der Station NORDKETTE im einstelligen Bereich.


Bei **Kohlenmonoxid** wurde der Grenzwert laut IG-L von 10 mg/m³ als maximaler Achtstundenmittelwert mit 0,5 mg/m³ an der Messstelle INNSBRUCK/Fallmerayerstraße und mit 0,7 mg/m³ am Standort LIENZ/Amlacherkreuzung bei weitem nicht erreicht!


Stationsvergleich

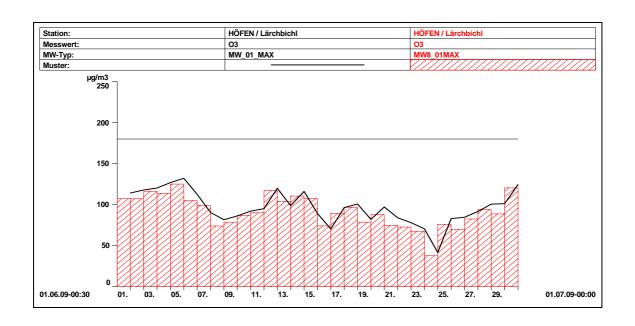




MONATSBERICHT JUNI 2009 Seite 9

Messstelle: HÖFEN / Lärchbichl

	SO)2	PM10	PM10	NO		NO2			_	03				СО	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				μg/m³				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									107	108	114	114	118			
02.									107	108	118	118	118			
03.									116	116	120	120	124			
04.									114	114	127	127	128			
05.									125	125	132	132	132			
06.									105	107	113	113	116			
So 07.									99	100	90	91	91			
08.									74	74	81	83	84			
09.									79	79	86	86	86			
10.									87	87	92	92	92			
11.									90	90	95	96	97			
12.									117	117	120	121	124			
13.									104	106	99	99	100			
So 14.									110	110	116	116	118			
15.									107	108	89	91	91			
16.									74	75	70	79	78			
17.									89	89	96	96	97			
18.									97	97	101	101	102			
19.									79	80	82	86	93			
20.									88	88	97	97	99			
So 21.									74	74	84	84	86			
22.									73	73	78	78	79			
23.									68	68	71	71	72			
24.									38	38	42	42	42			
25.									76	76	83	83	84			
26.									70	70	84	85	86			
27.									82	82	92	93	94			
So 28.									94	94	101	101	101			
29.									89	90	101	101	101			
30.									120	121	124	124	125			


	SO2	PM10	PM10	NO	NO2	03	CO
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						132	
Max.01-M						132	
Max.3-MW							
Max.08-M							
Max.8-MW						125	
Max.TMW						101	
97,5% Perz.							
MMW	-		·	-	·	65	
Gl.JMW							

Messstelle: HÖFEN / Lärchbichl

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					1	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					29	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					11	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: HEITERWANG Ort / B179

	SO2		PM10	PM10	NO		NO2				03				CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$ $\mu g/m^3$		$\mu g/m^3$			mg/m³				
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			10		25	12	32	38								
02.			15		69	24	50	51								
03.			14		27	19	35	40								
04.			18		37	23	41	45								
05.			19		36	19	33	34								
06.			6		40	24	44	60								
So 07.			5		26	13	32	32								
08.			7		45	14	32	43								
09.			9		50	18	30	34								
10.			8		31	15	36	43								
11.			8		19	13	26	29								
12.			15		42	16	38	54								
13.			16		20	14	29	34								
So 14.			9		31	13	28	39								
15.			14		57	19	50	55								
16.			8		40	19	37	38								
17.			12		45	14	29	42								
18.			17		28	16	35	37								
19.			8		59	22	43	53								
20.			10		28	15	34	39								
So 21.			9		34	16	32	42								
22.			5		40	22	51	53								
23.			6		63	27	58	62								
24.			7		66	25	37	45								
25.			9		63	19	34	42								
26.			19		70	25	39	47								
27.			13		52	18	42	52								
So 28.			8		22	11	19	24								
29.			13		38	13	27	35								
30.			15		60	13	25	28								

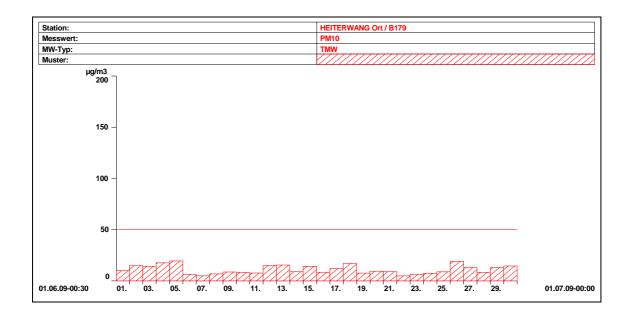
	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage		30		30	30		
Verfügbarkeit		99%		98%	98%		
Max.HMW				70	62		
Max.01-M					58		
Max.3-MW					55		
Max.08-M							
Max.8-MW							
Max.TMW		19		23	27		
97,5% Perz.							
MMW		11		11	18		
Gl.JMW					29		

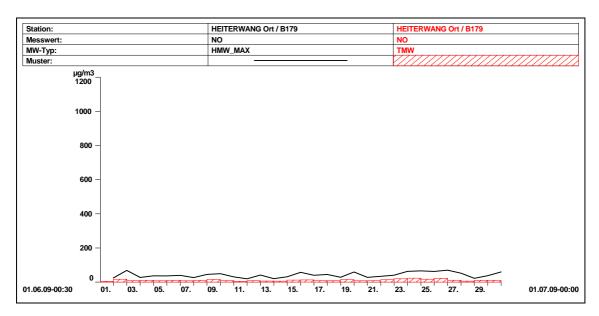
Messstelle: HEITERWANG Ort / B179

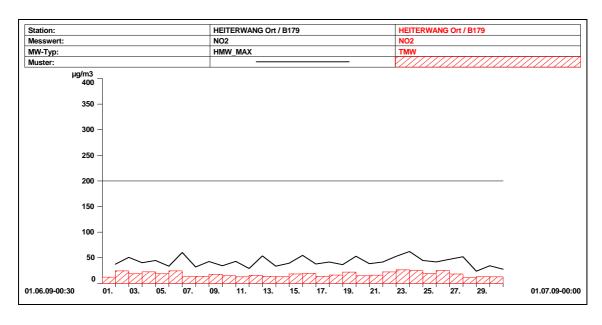
Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI l	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0		
ÖAW: SO2-Kriterium für Siedlungsgebiete						

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


VDI-RL 2310: NO-Grenzwert


0


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: JUNI 2009 Messstelle: IMST / Imsterau

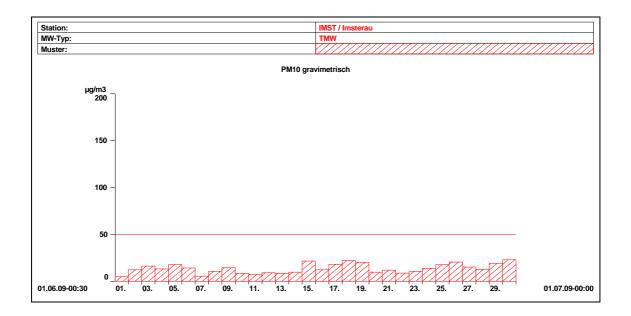
	SO	02	PM10	PM10	NO	_	NO2		03			СО				
			kont.	grav.					_							
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$			mg/m		
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				5	5	7	26	27								
02.				12	81	33	89	98								
03.				16	49	29	60	63								
04.				13	42	27	53	56								
05.				18	26	21	37	41								
06.				14	83	33	72	83								
So 07.				5	15	9	17	22								
08.				10	48	29	44	45								
09.				14	111	27	60	71								
10.				8	46	27	49	50								
11.				8	16	12	23	26								
12.				9	56	28	51	54								
13.				9	33	18	40	45								
So 14.				10	5	11	19	20								
15.				22	94	31	66	66								
16.				12	52	27	48	51								
17.				18	53	25	39	44								
18.				22	65	35	64	71								
19.				20	94	31	62	62								
20.				10	22	15	25	35								
So 21.				12	13	11	23	26								
22.				9	60	16	45	52								
23.				10	65	22	45	52								
24.				14	92	25	37	40								
25.				18	77	25	51	58								
26.				20	85	26	41	42								
27.				15	41	22	42	45								
So 28.				13	16	10	16	18								
29.				19	94	21	36	41								
30.				23	71	21	35	39								

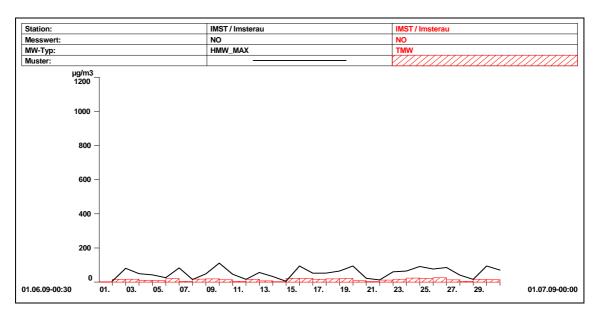
	SO2	PM10	PM10	NO	NO2	03	co
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage			30	30	30		
Verfügbarkeit			100%	98%	98%		
Max.HMW				111	98		
Max.01-M					89		
Max.3-MW					67		
Max.08-M							
Max.8-MW							
Max.TMW			23	25	35		
97,5% Perz.							
MMW			14	14	22		
Gl.JMW					37		

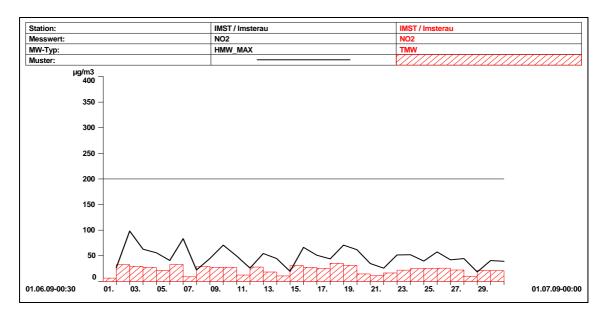
0

Zeitraum: JUNI 2009 Messstelle: IMST / Imsterau

Anzahl der Tage mit Grenzwertüberschreitungen


	l.					ı
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	О3	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				2		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						


VDI-RL 2310: NO-Grenzwert


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

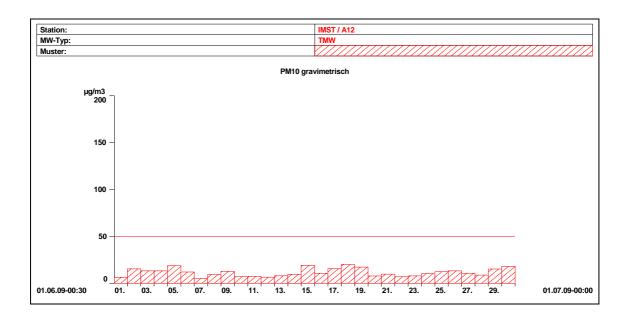
1) An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

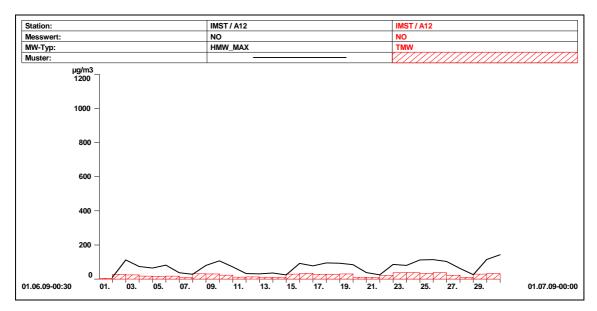
Zeitraum: JUNI 2009 Messstelle: IMST / A12

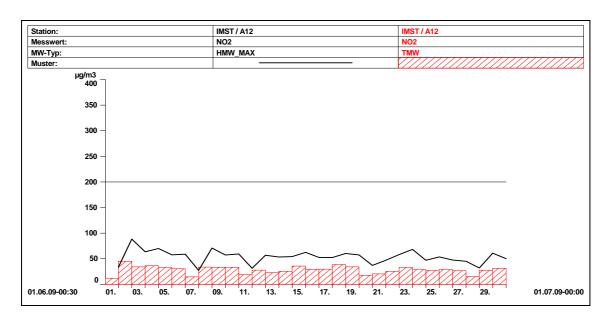
	SC	02	PM10	PM10	NO		NO2				03				CO	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu \text{g/m}^3$	$\mu \text{g}/\text{m}^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				6	11	12	30	34								
02.				15	112	45	79	89								
03.				13	74	34	57	64								
04.				13	65	37	63	70								
05.				19	82	33	55	58								
06.				12	37	30	52	59								
So 07.				5	28	15	24	27								
08.				9	80	34	68	71								
09.				13	107	34	55	57								
10.				7	71	33	59	59								
11.				7	33	19	30	32								
12.				6	31	28	47	57								
13.				8	36	23	43	54								
So 14.				10	25	26	53	54								
15.				19	92	36	57	63								
16.				11	77	30	51	53								
17.				16	95	30	46	52								
18.				20	93	39	59	60								
19.				17	84	34	54	58								
20.				8	38	17	36	37								
So 21.				10	25	20	42	47								
22.				7	86	25	53	58								
23.				8	80	33	65	68								
24.				10	112	29	45	47								
25.				12	114	28	49	54								
26.				13	104	29	45	48								
27.				11	62	27	40	45								
So 28.				9	26	15	28	32								
29.				15	115	28	50	61								
30.				18	143	31	46	50								

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage			30	30	30		
Verfügbarkeit			100%	98%	98%		
Max.HMW				143	89		
Max.01-M					79		
Max.3-MW					75		
Max.08-M							
Max.8-MW							
Max.TMW			20	38	45		
97,5% Perz.							
MMW			12	23	28		
GLJMW					45		

Zeitraum: JUNI 2009 Messstelle: IMST / A12


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	I Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				1		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			•


 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

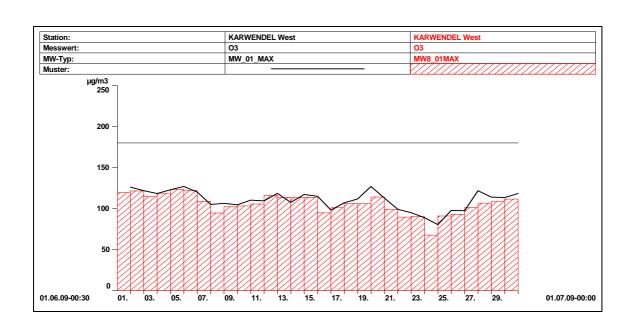
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: KARWENDEL West

	SC)2	PM10	PM10	NO	_	NO2				03	_			СО	
		/ 3	kont.	grav.	/3		/3				/3				mg/m³	
	μg		μg/m³	$\mu g/m^3$	μg/m³		μg/m³	l		l	μg/m³	l	l			l
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.									119	119	126	127	127			
02.									121	121	122	122	122			
03.									114	114	118	119	119			
04.									119	118	123	124	125			
05.									123	124	127	127	127			
06.									122	122	120	120	121			
So 07.									109	109	105	105	105			
08.									94	94	106	106	108			
09.									102	103	105	108	109			
10.									103	103	110	114	116			
11.									106	106	109	110	110			
12.									116	116	118	118	120			
13.									113	114	107	107	108			
So 14.									113	113	117	117	118			
15.									114	113	115	118	120			
16.									95	95	98	98	99			
17.									101	101	107	107	107			
18.									106	106	112	112	112			
19.									106	107	127	127	127			
20.									114	115	113	120	115			
So 21.									99	99	99	99	100			
22.									89	90	95	95	95			
23.									90	91	89	92	95			
24.									68	69	80	85	85			
25.									91	92	98	99	103			
26.									93	93	97	98	101			
27.									101	101	122	122	124			
So 28.									107	107	114	116	116			
29.									108	108	113	113	116			
30.									111	111	118	118	119			

	SO2	PM10	PM10	NO	NO2	03	co
		kont.	grav.				
	$\mu g/m^3$	μg/m³	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	mg/m³
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						127	
Max.01-M						127	
Max.3-MW							
Max.08-M							
Max.8-MW						124	
Max.TMW						116	
97,5% Perz.							
MMW						95	
Gl.JMW							

Messstelle: KARWENDEL West


Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					3	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					22	
ÖAW: SO2-Kriterium für Siedlungsgebiete						

 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

VDI-RL 2310: NO-Grenzwert

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

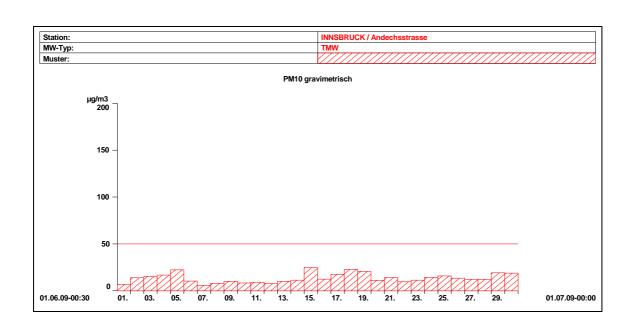
Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: INNSBRUCK / Andechsstrasse

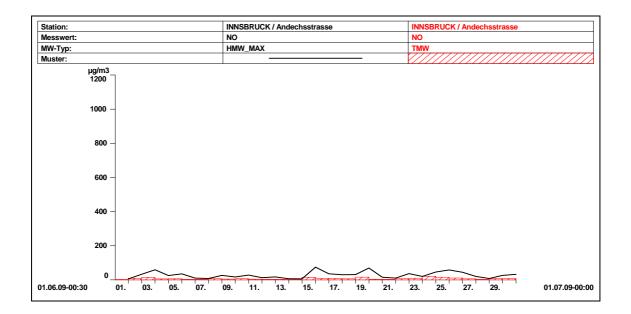
	SO)2	PM10	PM10	NO	_	NO2				03	-			СО	_
			kont.	grav.					_							_
	μg		μg/m³	μg/m³	μg/m³		μg/m³				μg/m³				mg/m³	I
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				7	6	14	26	27	76	76	83	83	84			
02.				14	33	32	68	71	67	67	79	83	85			
03.				15	59	30	49	54	75	75	89	89	95			
04.				17	26	24	49	51	88	88	94	94	94			
05.				22	35	28	47	48	94	94	97	97	99			
06.				10	10	17	31	32	94	94	100	102	103			
So 07.				6	8	15	31	38	67	67	72	72	73			
08.				8	27	21	48	48	82	82	90	91	91			
09.				10	17	19	37	43	89	89	92	93	94			
10.				8	28	27	56	67	66	66	72	72	72			
11.				9	13	19	32	34	84	83	89	89	90			
12.				8	17	18	50	51	96	96	99	100	101			
13.				10	7	14	43	44	89	90	81	81	81			
So 14.				11	6	19	49	68	91	91	100	100	101			
15.				25	75	39	73	75	66	66	75	75	77			
16.				13	36	26	48	57	54	55	62	62	66			
17.				18	30	23	32	35	73	73	82	82	84			
18.				23	31	27	46	48	84	84	97	97	98			
19.				21	70	36	63	63	51	53	60	60	63			
20.				11	16	19	32	35	66	67	74	74	76			
So 21.				14	11	16	32	37	62	62	67	67	67			
22.				10	37	20	43	45	62	62	68	68	70			
23.				11	20	34	52	53	52	53	52	53	53			
24.				14	46	36	42	45	11	11	15	15	17			
25.				16	58	28	39	40	41	41	46	46	46			
26.				13	45	24	37	38	47	47	55	58	58			
27.				12	20	24	41	43	47	48	60	60	61			
So 28.				12	8	16	29	29	68	68	78	78	78			
29.				19	27	25	32	38	46	46	51	53	54			
30.				19	33	24	41	44	49	49	69	69	73			

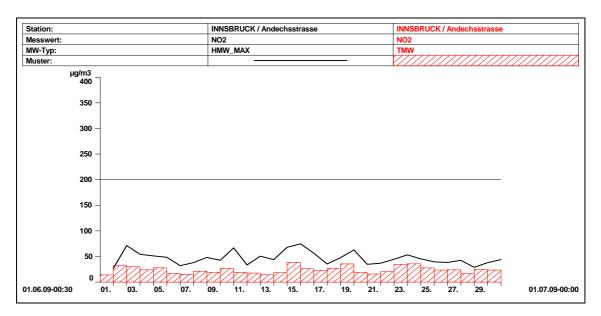
	SO2	PM10	PM10	NO	NO2	03	СО
	$\mu g/m^3$	kont. μg/m³	grav. μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage	10	1.0	30	30	30	30	
Verfügbarkeit			100%	98%	98%	98%	
Max.HMW				75	75	103	
Max.01-M					73	100	
Max.3-MW					70		
Max.08-M							
Max.8-MW						96	
Max.TMW			25	20	39	78	
97,5% Perz.							
MMW			14	7	24	45	
Gl.JMW					38		

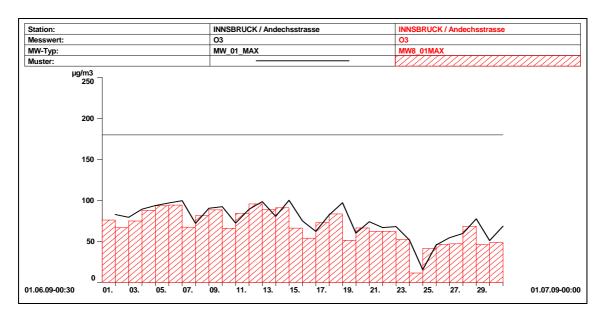

Messstelle: INNSBRUCK / Andechsstrasse

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		

Ozongesetz				
Alarmschwelle			0	
Informationsschwelle			0	
langfristiger Zielwert menschliche Gesundheit			0	
2. VO gegen forstschädliche Luftverunreinigungen				


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1	21	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1	0	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: INNSBRUCK / Fallmerayerstrasse

	SC	02	PM10	PM25	NO		NO2				03				co	
			grav.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$			1	$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	2	2	9	5	10	20	38	41						0.3	0.4	0.4
02.	2	3	17	10	71	46	79	85						0.4	0.6	0.8
03.	2	3	18	10	73	41	72	80						0.4	0.6	0.6
04.	2	3	21	11	49	33	58	61						0.4	0.6	0.6
05.	2	3	25	14	59	34	64	66						0.5	0.5	0.5
06.	2	2	12	8	14	21	27	33						0.3	0.3	0.3
So 07.	1	2	9	5	15	20	42	47						0.3	0.3	0.3
08.	2	2	12	7	51	34	68	77						0.5	0.7	0.7
09.	2	2	13	8	46	28	48	56						0.4	0.4	0.5
10.	2	2	12	7	55	37	73	76						0.4	0.7	0.8
11.	2	2	12	6	17	24	47	50						0.4	0.4	0.5
12.	2	2	10	6	36	28	55	59						0.4	0.5	0.6
13.	1	2	11	7	18	18	47	63						0.3	0.4	0.4
So 14.	2	2	14	9	12	22	47	53						0.3	0.3	0.4
15.	2	4	27	18	82	46	81	87						0.4	0.6	0.9
16.	2	2	15	10	80	34	73	75						0.4	0.6	0.6
17.	2	3	20	12	52	35	59	60						0.4	0.5	0.6
18.	2	3	23	14	44	40	67	76						0.4	0.7	1.0
19.	2	3	20	14	73	43	74	80						0.4	0.6	0.8
20.	2	2	12		37	26	48	56						0.3	0.4	0.5
So 21.	2	2	13	9	16	21	36	41						0.3	0.4	0.4
22.	1	3	11	6	61	29	51	57						0.5	0.5	0.6
23.	1	1	10	8	59	42	68	72						0.1	0.2	0.2
24.	1	2	14	10	91	41	53	62						0.2	0.3	0.5
25.	1	3	15	11	88	33	43	56						0.1	0.3	0.3
26.	1	2	13	10	61	33	57	75						0.1	0.2	0.3
27.	1	2	11	10	25	29	42	44						0.1	0.2	0.2
So 28.	1	2	12		11	20	44	48						0.1	0.1	0.1
29.	1	2	20	14	60	35	75	79						0.1	0.4	0.5
30.	1	2	20	14	54	34	68	84						0.2	0.3	0.4

	SO2	PM10	PM25	NO	NO2	03	со
		grav.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage	30	30	28	30	30		
Verfügbarkeit	98%	100%	93%	98%	98%		99%
Max.HMW	4			91	87		
Max.01-M					81		0.7
Max.3-MW	3				80		
Max.08-M							
Max.8-MW							0.5
Max.TMW	2	27	18	30	46		
97,5% Perz.	2						
MMW	2	15	10	13	31		0.3
Gl.JMW	_				43		

Messstelle: INNSBRUCK / Fallmerayerstrasse

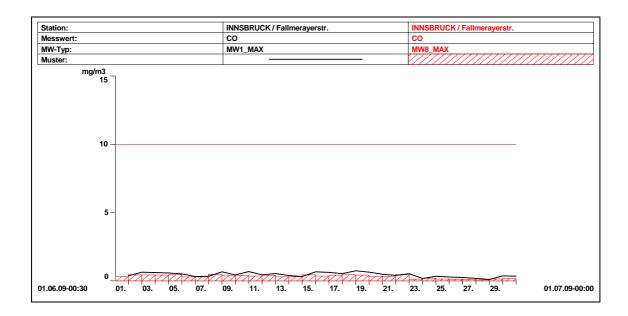
Anzahl der Tage mit Grenzwertüberschreitungen

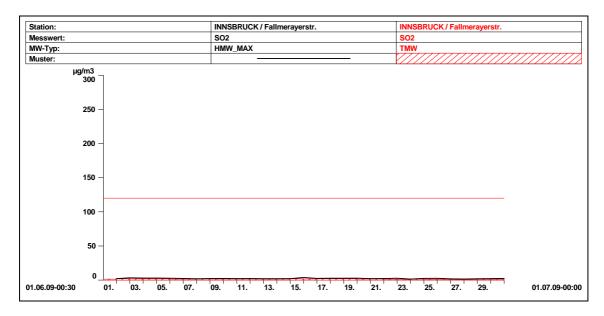
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	0		0		0
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation	0			n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				7		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		

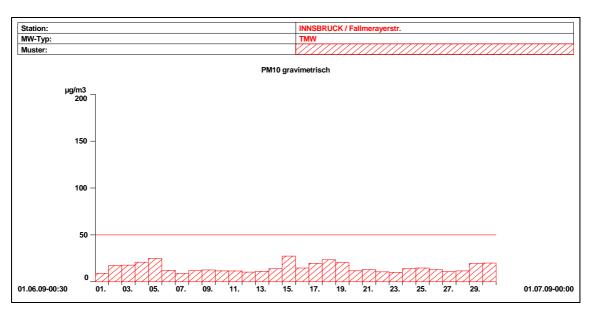
 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

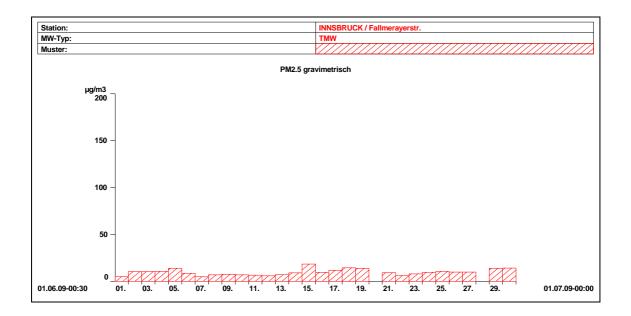
ÖAW: SO2-Kriterium für Siedlungsgebiete

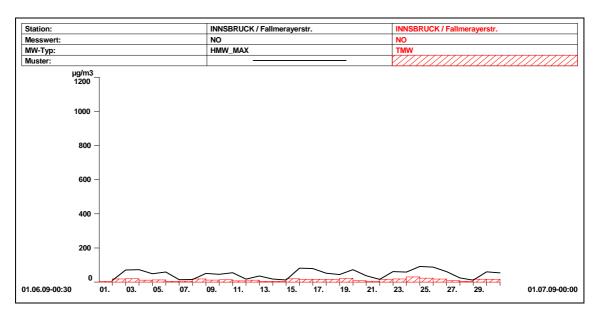
VDI-RL 2310: NO-Grenzwert

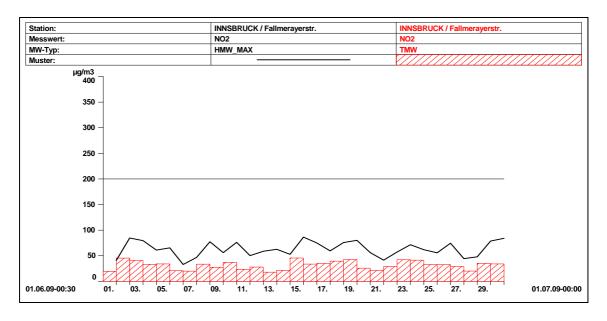

0


0


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

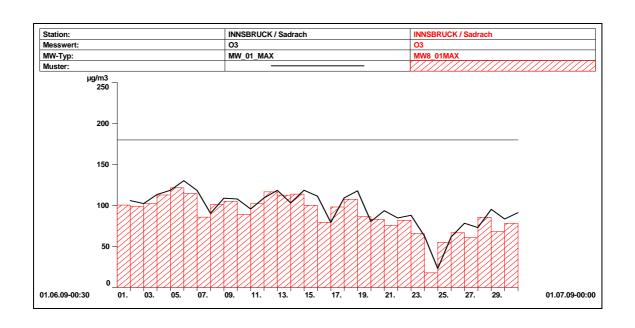

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



Messstelle: INNSBRUCK / Sadrach

μg/m³ μg/m³ μg/m³ μg/m³ μg/m³ μg/m³ μg/m³ μg/m³ mg/m³ max max	SC	02	PM10	PM10	NO	_	NO2		_	О3			СО	_
Tag			kont.	grav.										
Tag	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³		1	μg/m³	1			
01. 02. 101 101 106 107 107 02. 99 99 102 104 107 03. 102 102 113 113 115 04. 113 113 119 119 1121 05. 215 115 115 118 120 122 86 86 90 91 92 92 08. 101 101 109 109 109 09. 105 105 108 109 109 10. 89 90 96 96 96 11. 110 102 109 109 111 12. 117 117 118 120 120 13. 113 113 103 103 103 15. 100 101 111 112 111 112 111 112 111 112 111 1														max
02. 03. 99 99 102 104 107 03. 04. 102 102 113 113 115 115 113 119 119 121 05. 106. 115 115 115 115 115 115 1120 122 86 86 90 91 92 92 08. 101 101 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 111 112 117 117 118 120 120 113 113 113 103 103 103 103 103 103 103 113 <td> TMW</td> <td>HMW</td> <td>TMW</td> <td>TMW</td> <td>HMW</td> <td>TMW</td> <td>01-M</td> <td>HMW</td> <td></td> <td></td> <td></td> <td>8-MW</td> <td>01-M</td> <td>HMW</td>	 TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW				8-MW	01-M	HMW
03. 04. 04. 102 102 113 115 115 05. 113 113 119 119 121 122 122 130 130 132 115 115 118 120 122 So 07. 86 86 86 90 91 92 08. 101 101 109 109 109 10. 89 90 96 96 96 11. 112 117 117 118 120 120 13. 113 113 103 103 103 15. 114 114 119 119 120 15. 100 101 111 111 112 16. 114 114 114 119 119 120 17. 98 98 109 109 110 18. 108 118 118 118 120 20. 86 89 80 80														
04. 05. 113 113 119 119 121 05. 115 115 118 120 122 115 115 118 120 122 86 86 86 90 91 92 08. 101 101 109 109 109 10. 89 90 96 96 96 11. 117 117 118 120 120 13. 13 113 113 103 103 103 So 14. 14 114 119 119 120 15. 100 101 111 111 112 16. 100 101 111 111 112 16. 100 101 111 111 112 19. 98 98 109 109 110 18. 108 108 118 118 120 20. 82 88 89 80 80 84														
05. 06. 80. 115 115 118 120 122 86 86 90 91 92 08. 101 101 109 109 109 10. 89 90 96 96 96 11. 102 102 109 109 111 12. 117 117 118 120 120 13. 113 113 103 103 103 So 14. 114 114 119 119 120 15. 100 101 111 111 112 16. 80 80 79 79 79 17. 98 98 109 110 111 111 111 112 18. 108 118 118 118 120 86 89 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 <														
06. So 07. 86 86 90 91 92 08. 101 101 109 109 109 09. 105 105 108 109 109 10. 89 90 96 96 96 11. 117 117 118 120 120 13. 113 113 103 103 103 15. 100 101 111 111 112 16. 80 80 79 79 79 79 17. 98 98 109 109 110 18. 108 118 118 118 120 19. 86 89 80 80 80 80 84 20. 83 84 94 95 95 95 So 21. 76 76 85 87 89 22. 82 82 88 89 89 23. 66 66 66 66 63														
So 07. 86 86 90 91 92 08. 101 101 109 109 109 10. 89 90 96 96 96 11. 102 102 109 109 111 12. 117 117 118 120 120 13. 113 113 103 103 103 So 14. 114 114 119 119 120 15. 100 101 111 111 112 16. 80 80 79 79 79 17. 98 98 109 109 110 18. 108 118 118 118 120 19. 86 89 80 80 84 20. 83 84 94 95 95 So 21. 76 76 85 87 89 22. 82 82 88 89 89 23. 66 66														
08. 101 101 109 109 109 10. 105 105 108 109 109 11. 102 102 109 109 111 12. 117 117 118 120 120 13. 113 113 103 103 103 So 14. 114 114 119 119 120 15. 100 101 111 111 112 16. 80 80 79 79 79 17. 98 98 109 109 110 18. 108 108 118 118 120 19. 20. 86 89 80 80 84 20. 83 84 94 95 95 So 21. 76 76 85 87 89 22. 82 82 88 89 89 23. 66 66 66 63 64 66 24.														
09. 10. 105 108 109 109 11. 10. 102 102 109 109 111 12. 117 117 118 120 120 13. 113 113 103 103 103 So 14. 114 114 119 119 120 15. 100 101 111 111 112 16. 80 80 79 79 79 17. 98 98 109 109 110 18. 108 118 118 120 19. 86 89 80 80 84 20. 83 84 94 95 95 So 21. 76 76 85 87 89 22. 82 82 82 88 89 89 23. 66 66 66 63 64 66 18 18 23 24 24 25. 55 <														
10. 11. 12. 102. 109. 109. 109. 111. 12. 13. 113. 113. 113. 103. 103. 103. So 14. 114. 114. 119. 119. 120. 15. 100. 101. 111. 111. 112. 16. 80. 80. 79. 79. 79. 17. 98. 98. 109. 109. 110. 18. 108. 118. 118. 118. 120. 19. 86. 89. 80. 80. 84. 20. 83. 84. 94. 95. 95. So 21. 76. 76. 85. 87. 89. 22. 23. 82. 82. 88. 89. 89. 23. 66. 66. 66. 63. 64. 66. 18. 118. 123. 24. 24. 25. 55. 55. 62. 62. 62. 62. 62. 62. 62														
11. 12. 102 109 109 111 112 117 117 118 120 120 120 13. 113 113 103 1														
12. 13. 117 117 118 120 120 13. 113 113 103 103 103 15. 100 101 111 111 112 16. 80 80 79 79 79 17. 98 98 109 109 110 18. 108 108 118 118 120 19. 86 89 80 80 84 20. 83 84 94 95 95 So 21. 76 76 85 87 89 22. 82 88 89 89 23. 66 66 66 63 64 66 24. 25. 55 55 62 62 62 62														
13. So 14. 113 113 103 103 103 15. 100 101 111 111 112 16. 80 80 79 79 79 17. 98 98 109 109 110 18. 108 118 118 120 86 89 80 80 84 20. 83 84 94 95 95 So 21. 76 76 85 87 89 22. 82 82 88 89 89 23. 66 66 66 63 64 66 24. 18 18 23 24 24 25. 55 55 62 62 62 62														
So 14. 114 114 119 119 120 15. 100 101 111 111 112 16. 80 80 79 79 79 17. 98 98 109 109 110 18. 108 108 118 118 120 86 89 80 80 84 20. 83 84 94 95 95 So 21. 76 76 85 87 89 22. 82 88 89 89 23. 66 66 63 64 66 24. 18 18 23 24 24 25. 55 55 55 62 62 62														
15. 100 101 111 111 112 80 80 79 79 79 79 17. 98 98 109 109 110 18. 108 108 118 118 120 86 89 80 80 84 20. 83 84 94 95 95 So 21. 76 76 85 87 89 22. 82 82 88 89 89 23. 66 66 63 64 66 24. 18 18 23 24 24 25. 55 55 62 62 62 62														
16. 80 80 79 79 79 17. 98 98 109 109 110 18. 108 118 118 120 86 89 80 80 84 20. 83 84 94 95 95 So 21. 76 76 85 87 89 22. 82 88 89 89 23. 66 66 63 64 66 24. 18 18 23 24 24 25. 55 55 62 62 62 62														
17. 18. 19. 108 20. 86 89 80 80 80 81 80 82 82 83 84 84 94 85 87 89 89 82 82 82 82 83 84 84 94 95 95 82 82 88 89 89 89 66 66 63 64 66 18 18 23 24 24 25 55 55 62 62 62														
18. 19. 108 108 118 118 120 86 89 80 80 84 20. 83 84 94 95 95 So 21. 76 76 85 87 89 22. 82 82 88 89 89 23. 66 66 63 64 66 24. 18 18 23 24 24 25. 55 55 62 62 62														
19. 20. 20. 83 84 94 95 95 So 21. 76 76 85 87 89 22. 82 82 88 89 89 23. 66 66 63 64 66 24. 18 18 23 24 24 25. 55 55 62 62 62 62														
20. 83 84 94 95 95 So 21. 76 76 85 87 89 22. 82 82 88 89 89 23. 66 66 63 64 66 18 18 23 24 24 25. 55 55 62 62 62														
So 21. 22. 23. 24. 25. 76 76 85 87 89 82 82 88 89 89 66 66 63 64 66 18 18 23 24 24 25. 55 55 62 62 62														
22. 23. 24. 25. 82 82 88 89 89 66 66 63 64 66 18 18 23 24 24 55 55 62 62 62														
23. 24. 25. 66 66 63 64 66 18 18 23 24 24 55 55 62 62 62 62														
24. 25. 18 18 23 24 24 55 55 62 62 62														
25. 55 55 62 62 62														
27.														
So 28.														
29.														
30.														


	SO2	PM10	PM10	NO	NO2	О3	CO
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						132	
Max.01-M						130	
Max.3-MW							
Max.08-M							
Max.8-MW						122	
Max.TMW						101	
97,5% Perz.							
MMW						65	
Gl.JMW			·	-	·		

Messstelle: INNSBRUCK / Sadrach

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					1	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD	[Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					28	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					13	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

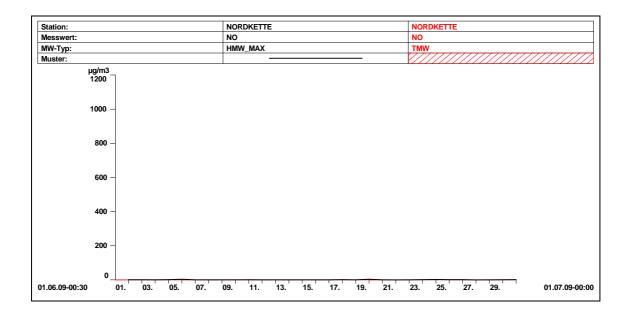
n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

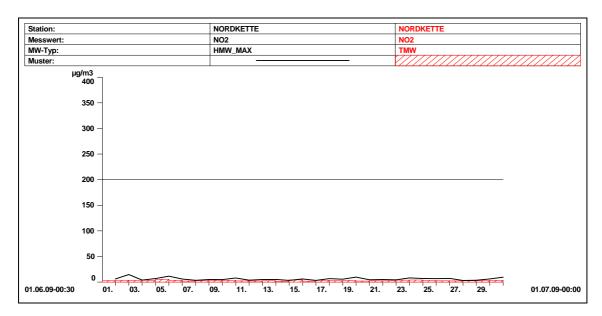
Zeitraum: JUNI 2009 Messstelle: NORDKETTE

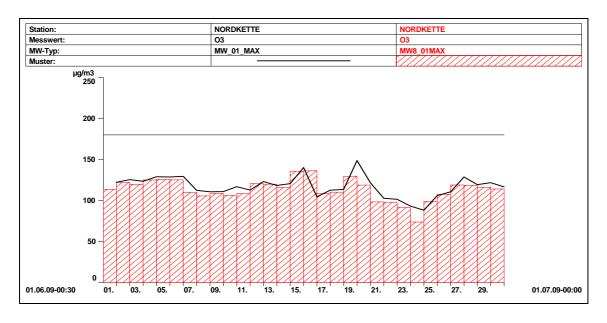
	SO)2	PM10	PM10	NO		NO2				03	_	_		CO	
			kont.	grav.												
	μg	/m³	μg/m³	$\mu g/m^3$	$\mu g/m^3$		\mug/m^3				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.					1	3	5	6	113	113	122	124	124			
02.					1	4	12	15	122	121	125	126	127			
03.					0	3	4	4	120	120	123	123	124			
04.					2	4	5	7	125	125	129	129	129			
05.					4	5	10	12	126	125	129	129	129			
06.					1	4	6	6	125	125	129	130	130			
So 07.					1	2	3	3	110	110	112	112	113			
08.					1	3	5	5	105	105	111	111	111			
09.					1	4	5	5	108	109	111	111	112			
10.					1	3	8	8	106	106	117	117	117			
11.					0	2	4	4	108	109	113	113	113			
12.					1	2	4	5	121	121	123	123	123			
13.					1	3	5	5	120	120	118	121	123			
So 14.					0	2	3	3	116	116	121	121	122			
15.					1	4	6	6	136	136	140	140	140			
16.					1	2	2	3	136	135	104	123	112			
17.					2	3	7	7	108	109	112	112	114			
18.					1	3	5	6	110	110	113	114	115			
19.					4	3	6	10	129	129	149	150	151			
20.					1	2	4	5	119	119	122	123	123			
So 21.					0	3	4	5	98	98	103	103	105			
22.					1	3	4	4	98	98	101	102	104			
23.					2	4	8	8	91	91	93	94	94			
24.					3	4	6	7	74	74	88	88	89			
25.					2	3	6	7	99	99	106	106	107			
26.					1	3	6	7	107	107	111	111	112			
27.					0	2	3	3	119	119	129	132	132			
So 28.					1	3	3	4	118	119	119	119	120			
29.					1	3	5	6	116	116	122	122	122			
30.					1	3	8	10	114	115	116	118	118			

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage				30	30	30	
Verfügbarkeit				98%	98%	98%	
Max.HMW				4	15	151	
Max.01-M					12	149	
Max.3-MW					8		
Max.08-M							
Max.8-MW						136	
Max.TMW				1	5	124	
97,5% Perz.							
MMW				0	3	102	
GLJMW					4		

Zeitraum: JUNI 2009 Messstelle: NORDKETTE


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit				0		
Zielwerte menschliche Gesundheit				0		
Zielwerte Ökosysteme, Vegetation				0		
Ozongesetz				_		
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					8	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				0	30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0	25	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

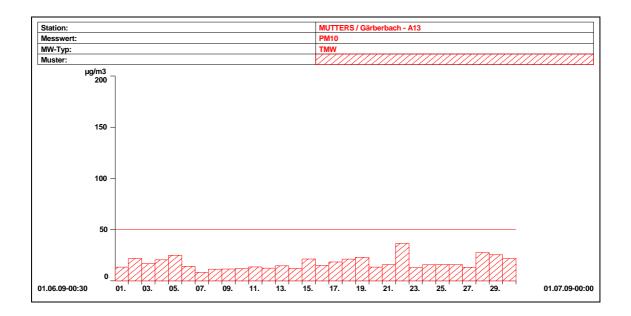
Messstelle: MUTTERS / Gärberbach - A13

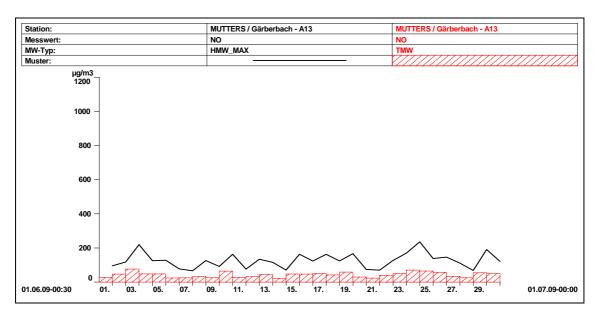
	SC)2	PM10	PM10	NO	_	NO2		_		03				СО	
			kont.	grav.					_							
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³				μg/m³				mg/m³	
1_		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			14		95	48	82	92								
02.			22		118	61	101	121								
03.			17		219	57	93	102								
04.			21		125	58	90	102								
05.			25		128	64	143	148								
06.			14		77	50	88	99								
So 07.			8		66	36	79	82								
08.			11		126	41	70	74								
09.			12		92	38	85	86								
10.			12		163	64	116	118								
11.			14		76	38	57	66								
12.			12		134	42	72	77								
13.			15		116	57	91	96								
So 14.			12		71	40	95	111								
15.			21		163	55	103	112								
16.			15		124	47	85	87								
17.			18		163	50	114	122								
18.			21		124	52	110	125								
19.			23		166	55	85	98								
20.			13		74	46	72	81								
So 21.			16		70	40	78	81								
22.			36		127	43	88	90								
23.			13		170	46	86	96								
24.			16		236	42	62	69								
25.			16		138	45	91	100								
26.			16		146	43	84	101								
27.			13		111	40	81	86								
So 28.			28		68	41	77	83								
29.			25		191	45	86	94								
30.			22		121	47	100	115								

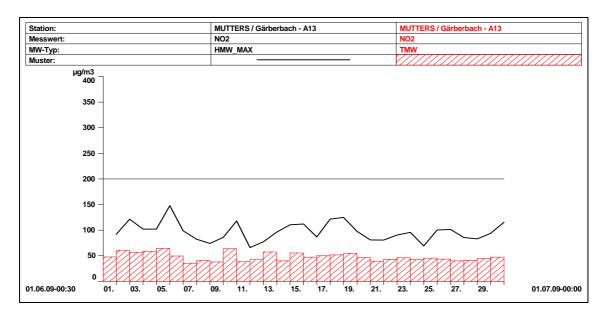
	SO2	PM10 kont.	PM10	NO	NO2	03	СО
	$\mu g/m^3$	μg/m³	grav. μg/m³	$\mu g/m^3$	$\mu g/m^3$	μg/m³	mg/m³
Anz. Messtage		30		30	30		
Verfügbarkeit		100%		98%	98%		
Max.HMW				236	148		
Max.01-M					143		
Max.3-MW					125		
Max.08-M							
Max.8-MW							
Max.TMW		36		77	64		
97,5% Perz.							
MMW		17		43	48		
Gl.JMW					49		

Messstelle: MUTTERS / Gärberbach - A13

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		


Ozongesetz			
Alarmschwelle			
Informationsschwelle			
langfristiger Zielwert menschliche Gesundheit			
2. VO gegen forstschädliche Luftverunreinigungen			


Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)						
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				29		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

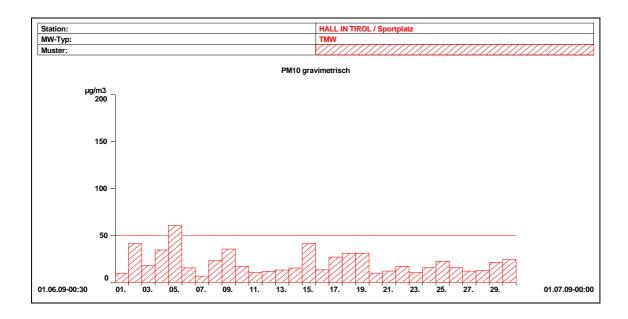
1) An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

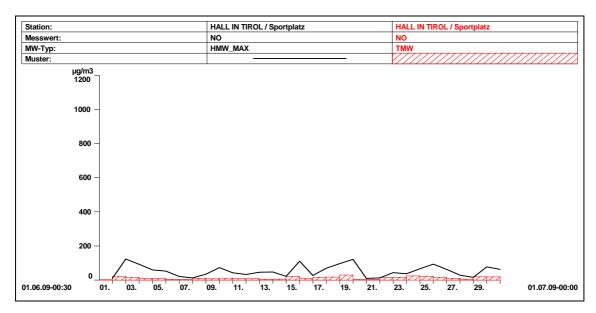
 $Messstelle: \quad HALL\ IN\ TIROL\ /\ Sportplatz$

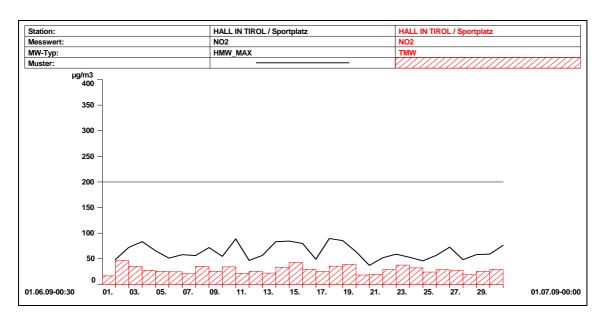
	SC	02	PM10	PM10	NO		NO2		_		03				СО	
			kont.	grav.						/ 2						
	μg		μg/m³	μg/m³	$\mu g/m^3$		μg/m³				μg/m³				mg/m³	ı
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
01.	11/1//	1111111	111111	10	10	17	39	48	00 111	0 111 11	01 111	1 1/1 //	1111111	0 111 11	01 111	111/1//
02.				41	124	46	70	72								
03.				18	92	35	80	84								
04.				34	60	27	63	66								
05.				60	53	25	51	51								
06.				15	21	25	55	58								
So 07.				7	13	21	55	56								
08.				23	35	35	67	72								
09.				35	73	25	48	55								
10.				17	43	34	78	89								
11.				10	33	22	45	47								
12.				12	46	25	56	57								
13.				13	48	22	79	83								
So 14.				15	22	33	83	85								
15.				41	111	43	77	80								
16.				13	27	29	46	49								
17.				27	69	25	85	90								
18.				31	96	36	76	85								
19.				31	122	39	62	64								
20.				10	10	18	30	37								
So 21.				12 17	13 44	20 29	39 59	52 59								
23.				10	37	38	52	53								
24.				16	66	32	42	46								
25.				22	93	24	51	57								
26.				16	63	29	63	73								
27.				12	29	28	40	48								
So 28.				12	16	19	56	58								
29.				21	77	25	51	59								
30.				24	63	29	71	76								

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage			30	30	30		
Verfügbarkeit			100%	98%	98%		
Max.HMW				124	90		
Max.01-M					85		
Max.3-MW					82		
Max.08-M							
Max.8-MW							
Max.TMW			60	30	46		
97,5% Perz.							
MMW			21	12	28		
Gl.JMW					42		

Messstelle: HALL IN TIROL / Sportplatz


Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		1		0		
Zielwerte menschliche Gesundheit		1		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				8		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) $\ddot{U}2)$ Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

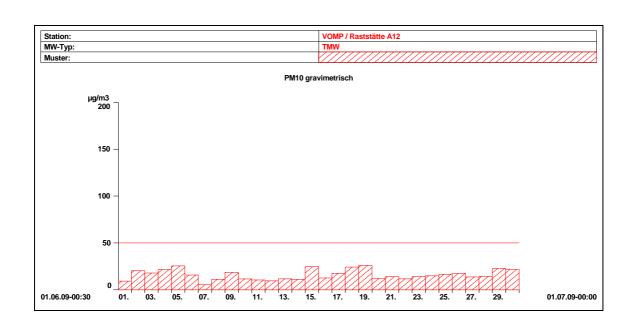
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: VOMP / Raststätte A12

	SC)2	PM10	PM10	NO	_	NO2		_		03				СО	_
			kont.	grav.					_							
	μg	/m³	μg/m³	μg/m³	μg/m³		μg/m³				μg/m³				mg/m³	1
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				9	57	41	70	74								
02.				20	242	71	119	134								
03.				18	239	61	119	135								
04.				22	250	64	116	122								
05.				26	242	60	100	105								
06.				16	216	66	95	98								
So 07.				5	50	32	65	65			_					
08.				11	220	54	125	125								
09.				19	250	62	106	109								
10.				12	198	65	103	113								
11.				11	94	45	68	73								
12.				10	303	64	105	112								
13.				12	169	51	78	89								
So 14.				11	69	47	101	113								
15.				25	320	64	116	138								
16.				13	201	55	88	90								
17.				18	294	47	94	101								
18.				24	278	52	98	104								
19.				26	324	66	106	125								
20.				12	113	52	88	91								
So 21.				14	84	38	70	80								
22.				12	138	57	91	95								
23.				14	259	68	107	112								
24.				15	318	56	88	101								
25.				17	213	46	73	86								
26.				17	187	52	102	107								
27.				14	222	58	94	104								
So 28.				14	60	37	53	59								
29.				23	307	55	110	115								
30.				22	286	52	97	103								

	SO2	PM10	PM10	NO	NO2	03	CO
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage			30	30	30		
Verfügbarkeit			100%	98%	98%		
Max.HMW				324	138		
Max.01-M					125		
Max.3-MW					112		
Max.08-M							
Max.8-MW							
Max.TMW			26	119	71		
97,5% Perz.						-	
MMW			16	66	54		
Gl.JMW					66		

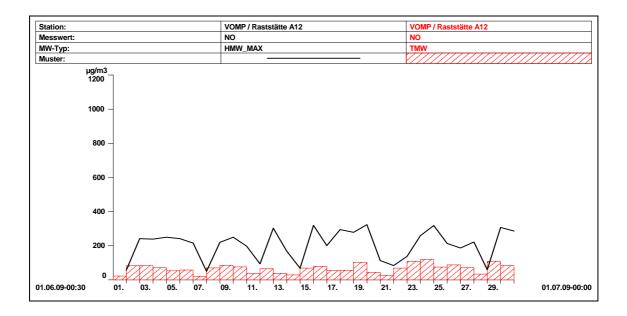
Messstelle: VOMP / Raststätte A12

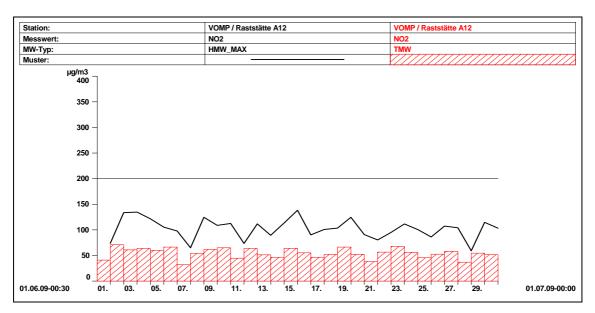

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		

Ozongesetz												
Alarmschwelle												
Informationsschwelle												
langfristiger Zielwert menschliche Gesundheit												
2. VO gegen forstschädliche Luftverunreinigungen												

Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)													
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				27									
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1									
ÖAW: SO2-Kriterium für Siedlungsgebiete													
VDI-RL 2310: NO-Grenzwert			0										


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

MONATSBERICHT JUNI 2009

Messstelle: VOMP / An der Leiten

	SC)2	PM10	PM10	NO		NO2		03					CO		
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.			11		25	24	46	51								
02.			19		74	45	65	70								
03.			11		101	37	68	70								
04.			20		43	34	71	76								
05.			24		138	32	64	68								
06.			14		67	43	74	76								
So 07.			6		10	17	40	41								
08.			11		70	37	67	71								
09.			18		86	35	65	68								
10.			10		98	35	87	97								
11.			12		70	26	44	52								
12.			10		79	32	70	71								
13.			11		24	26	51	74								
So 14.			11		42	20	47	50								
15.			20		119	42	73	86								
16.			9		74	38	57	60								
17.			15		60	27	58	64								
18.			22		132	31	63	65								
19.			22		130	40	58	64								
20.			10		18	28	50	52								
So 21.			12		38	21	50	51								
22.			10		25	31	58	61								
23.			10		84	39	60	71								
24.			12		103	34	44	47								
25.			23		66	28	43	46								
26.			10		48	28	53	61								
27.			11		52	32	60	75								
So 28.			13		29	23	43	46								
29.			20		184	32	57	65								
30.			19		118	30	62	67								

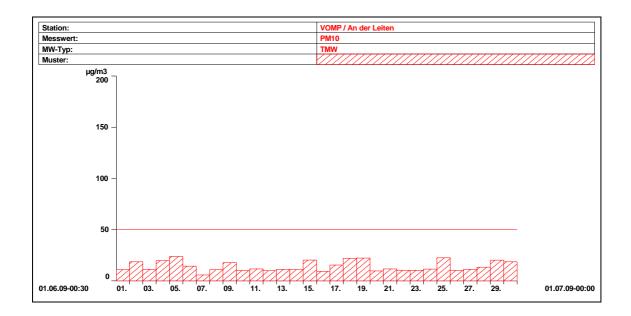
	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		30		30	30		
Verfügbarkeit		100%		98%	98%		
Max.HMW				184	97		
Max.01-M					87		
Max.3-MW					75		
Max.08-M							
Max.8-MW							
Max.TMW		24		35	45		
97,5% Perz.							
MMW		14	, in the second	16	32		
Gl.JMW					42		

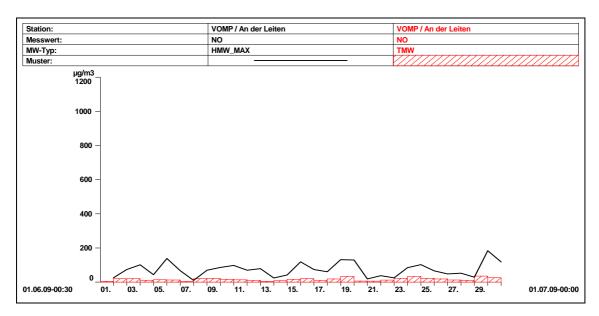
Messstelle: VOMP / An der Leiten

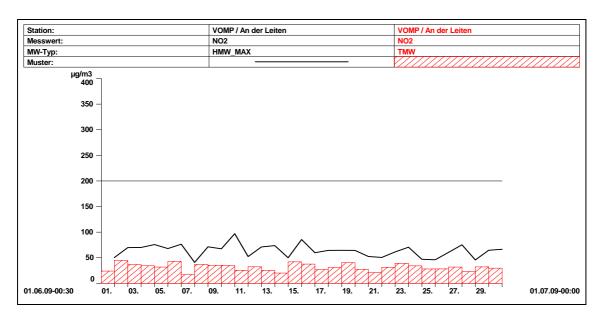
Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				4		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


VDI-RL 2310: NO-Grenzwert


0


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

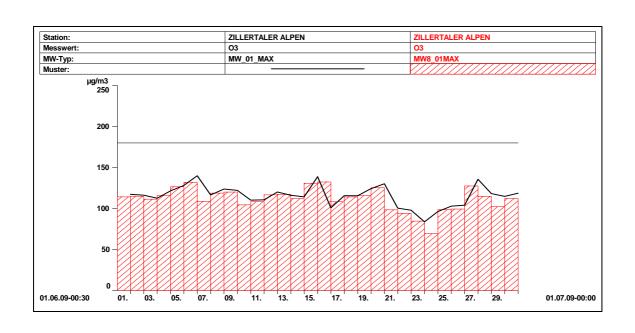
¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Messstelle: ZILLERTALER ALPEN

	SC)2	PM10	PM10	NO	_	NO2				03				СО	_
			kont.	grav.												
	μg		μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				μg/m³				mg/m³	
Tag	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
	1101 00	11101 00	1 101 00	1 101 00	11111 11	1 101 00	01-101	111/1//						O-1V1 VV	01-W	11101 00
01. 02.									114 115	114 115	117 116	117 116	118 117			
03.									111	111	113	113	117			
04.									116	116	121	122	123			
05.									127	127	128	129	133			
06.									132	132	140	141	141			
So 07.									109	109	117	117	117			
08.									119	119	124	124	124			
09.									120	120	122	123	123			
10.									104	106	110	110	111			
11.									108	108	111	111	111			
12.									117	116	120	120	121			
13.									117	117	116	116	117			
So 14.									112	112	114	114	115			
15.									131	131	139	139	139			
16.									132	130	101	112	102			
17.									108	108	116	116	116			
18.									114	114	116	116	117			
19.									116	116	124	126	130			
20.									125	126	130	130	131			
So 21.									98	98	100	101	102			
22.									94	95	98	98	99			
23.									85	85	84	84	85			
24.									69	70	96	96	99			
25.									99 99	99	103	104	104			
26.										99	104	104	118			
27. So 28.									127 115	127 115	136 118	136 118	136 120			
So 28. 29.									102	103	118	118	115			
30.									112	112		119	119			
30.			l					l	112	112	119	119	119	l		

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						141	
Max.01-M						140	
Max.3-MW							
Max.08-M							
Max.8-MW						132	
Max.TMW						119	
97,5% Perz.							
MMW						100	
GLJMW							

Messstelle: ZILLERTALER ALPEN


Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					6	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VD	I Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					30	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					24	
ÖAW: SO2-Kriterium für Siedlungsgebiete						

 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

VDI-RL 2310: NO-Grenzwert

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: BRIXLEGG / Innweg

	SO)2	PM10	PM10	NO	_	NO2		_	03		3		со		
			kont.	grav.					_							
	μg		μg/m³	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$	I			μg/m³	I			mg/m³	I
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	5	54		11												
02.	2	7		15												
03.	1	15		12												
04.	3	15		20												
05.	11	59		25												
06.	2	9		15												
So 07.	2	17		5												
08.	2	10		10												
09.	13 5	108		24												
10.	2	28		9 8												
11. 12.	7	9 69		8 12												
13.	9	63		14												
So 14.	5	36		12												
15.	3	12		24												
16.	2	14		10												
17.	9	61		23												
18.	3	15		29												
19.	2	5		26												
20.	2	14		13												
So 21.	1	8		13												
22.	2	5		10												
23.	1	1		6												
24.	1	4		8												
25.	2	4		13												
26.	1	3		12												
27.	1	1		9												
So 28.	2	8		14												
29.	2	4		17												
30.	2	8		16												

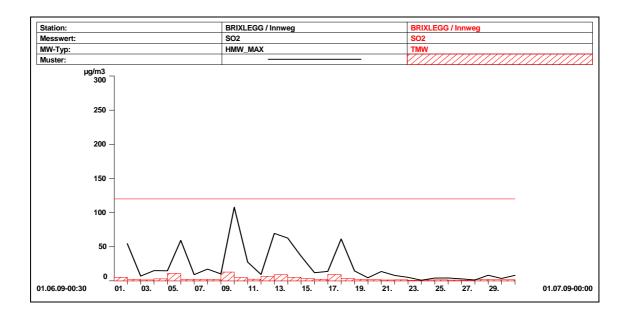
	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage	30		30				
Verfügbarkeit	98%		100%				
Max.HMW	108						
Max.01-M							
Max.3-MW	49						
Max.08-M							
Max.8-MW							
Max.TMW	13		29				
97,5% Perz.	21						
MMW	4		14	·			
Gl.JMW							

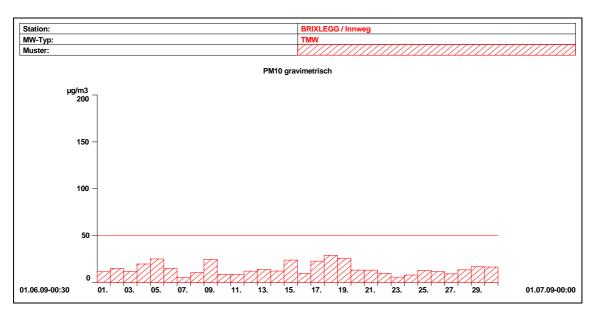
Messstelle: BRIXLEGG / Innweg

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	СО			
IG-Luft									
Warnwerte	0								
Grenzwerte menschliche Gesundheit	0	0							
Zielwerte menschliche Gesundheit		0							
Zielwerte Ökosysteme, Vegetation	0								
Ozongesetz									
Alarmschwelle									
Informationsschwelle									
langfristiger Zielwert menschliche Gesundheit									
2. VO gegen forstschädliche Luftverunreinigungen	0/0								
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)									

ÖAW: Zielvorstellungen Pflanzen, Ökosysteme		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)		
ÖAW: SO2-Kriterium für Siedlungsgehiete	0	


VDI-RL 2310: NO-Grenzwert


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

MONATSBERICHT JUNI 2009

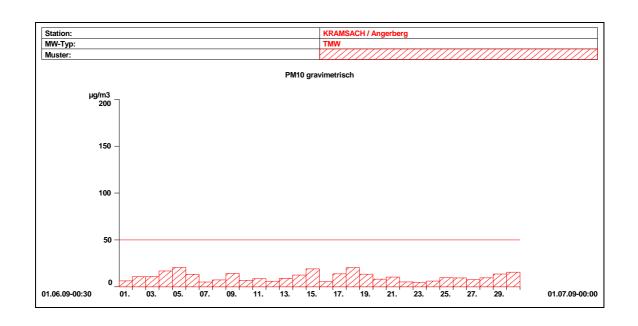
 $Mess stelle: \quad KRAMSACH \, / \, Angerberg$

	SO2		PM10	PM10	NO		NO2		03					СО		
			kont.	grav.												
	μg	/m³	μg/m³	μg/m³	$\mu g/m^3$		μg/m³			ı	μg/m³	1		mg/m³		
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.				6	4	8	15	16	100	100	105	107	108			
02.				11	40	21	53	54	97	96	88	92	94			
03.				11	8	10	21	22	113	113	119	119	119			
04.				17	12	13	23	24	113	113	110	112	113			
05.				21	16	17	32	34	121	121	127	128	128			
06.				13	18	16	31	40	114	114	100	100	102			
So 07.				5	6	7	14	15	80	80	88	88	88			
08.				7	16	13	39	42	77	77	82	82	83			
09.				14	46	19	44	47	73	74	77	84	88			
10.				7	6	15	33	46	78	78	86	86	88			
11.				9	15	11	27	28	97	98	103	106	108			
12.				6	3	8	18	19	119	119	123	123	123			
13.				9	5	11	31	35	115	116	102	102	103			
So 14.				13	5	9	14	14	111	111	120	120	120			
15.				19	22	23	57	58	105	105	81	84	85			
16.				5	10	11	23	28	70	71	77	77	84			
17. 18.				14	23 10	13 15	28 27	31 30	96 97	96 97	101 105	101 105	101 105			
				21	22	15 19	44	48	87			64				
19. 20.				13 8	6	19	31	48 36	70	88 70	61 85	89	64 89			
So 21.				10	5	9	18	26	66	66	76	76	77			
22.				5	10	13	28	29	62	62	71	71	72			
23.				5	4	10	22	30	59	60	61	63	63			
24.				6	14	19	31	33	40	40	36	36	37			
25.				10	34	18	26	28	38	37	45	45	47			
26.				9	26	14	32	37	63	63	83	83	84			
27.				8	3	11	24	29	58	58	68	68	69			
So 28.				10	3	8	15	18	57	57	65	68	69			
29.				14	50	13	26	29	57	57	62	62	67			
30.				16	37	11	27	28	68	69	73	73	75			

	SO2	PM10	PM10	NO	NO2	03	co
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage			30	30	30	30	
Verfügbarkeit			100%	97%	97%	97%	
Max.HMW				50	58	128	
Max.01-M					57	127	
Max.3-MW					49		
Max.08-M							
Max.8-MW						121	
Max.TMW			21	9	23	96	
97,5% Perz.							·
MMW			11	3	13	57	
Gl.JMW					25		

Messstelle: KRAMSACH / Angerberg

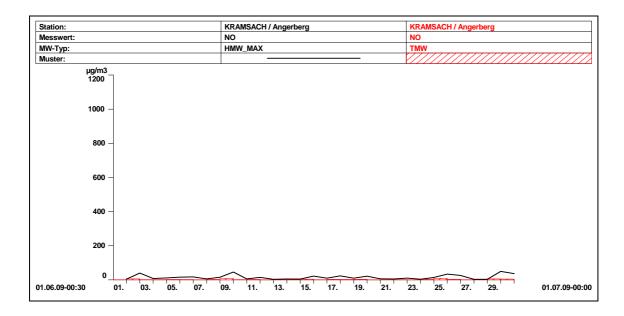
Anzahl der Tage mit Grenzwertüberschreitungen

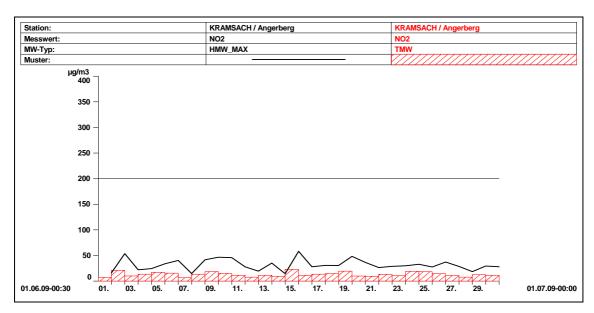

SO2	PM10 1)	NO	NO2	03	CO
			0		
	0		0		
	0		0		
			0		
				0	
				0	
				1	
Richtlini	e)				
			Ü1	24	
			0	8	
		0 0	0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 1 0 1

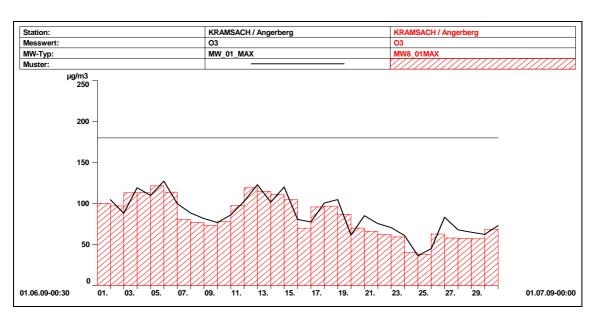
 $[\]ddot{\text{U}}\text{1})$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)

ÖAW: SO2-Kriterium für Siedlungsgebiete

VDI-RL 2310: NO-Grenzwert


0




Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Zeitraum: JUNI 2009 Messstelle: KUNDL / A12

	SC	02	PM10	PM10	NO	_	NO2		03					СО			
			kont.	grav.					-								
	μg	/m³	μg/m³	$\mu g/m^3$	μg/m³		μg/m³	I			μg/m³	I			mg/m³	I	
_		max			max		max	max	max	max	max	max	max	max	max	max	
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW	
01.					63	45	74	89									
02.					258	56	94	105									
03.					73	38	76	88									
04.					152	63	110	113									
05.					141	53	108	119									
06.					133	67	104	115									
So 07.					60	38	72	73								_	
08.					181	65	112	121									
09.					223	55	91	99									
10.					164	72	111	120									
11.					81	37	65	68									
12.					198	56	112	114									
13.					125	54	107	111									
So 14.					70	54	103	105									
15.					186	67	88	100									
16.					155	56	96	103									
17.					212	48	112	124									
18.					256	50	103	116									
19.					203	69	96	101									
20.					144	64	101	111									
So 21.					91	42	87	108									
22.					211	58	89	94									
23.					150	48	86	99									
24.					203	50	95	97									
25.					266	56	96	110									
26.					206	57	103	117									
27.					157	53	100	104									
So 28.					74	44	74	78									
29.					207	54	91	96									
30.					212	53	104	113									

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage				30	30		
Verfügbarkeit				98%	98%		
Max.HMW				266	124		
Max.01-M					112		
Max.3-MW					106		
Max.08-M							
Max.8-MW							
Max.TMW				96	72		
97,5% Perz.							
MMW			-	56	54	-	
Gl.JMW			-		56	-	

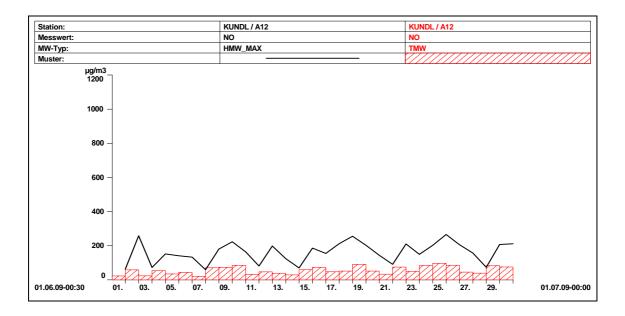
0

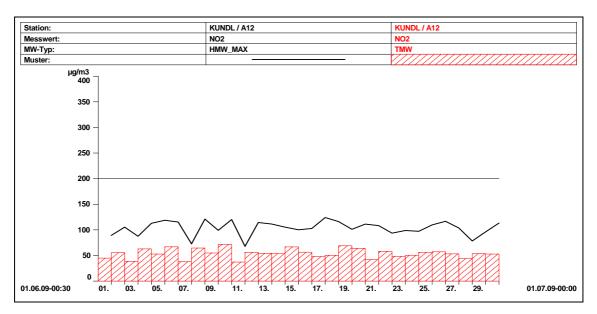
Zeitraum: JUNI 2009 Messstelle: KUNDL / A12

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit				0		
Zielwerte menschliche Gesundheit				0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI F	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				28		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						

 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


VDI-RL 2310: NO-Grenzwert


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

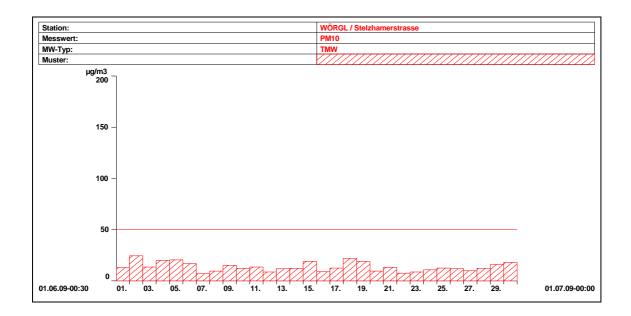
MONATSBERICHT JUNI 2009

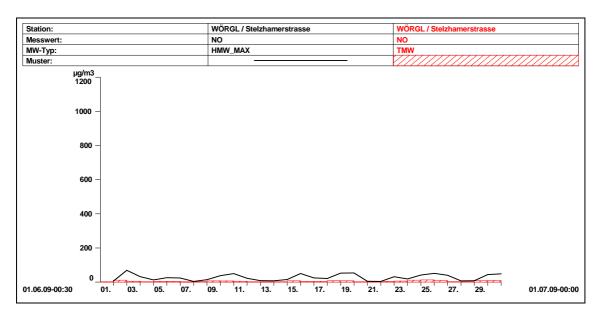
Messstelle: WÖRGL / Stelzhamerstrasse

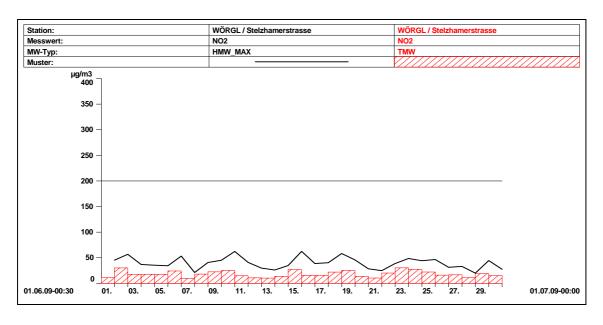
	SC)2	PM10	PM10	NO		NO2		_	_	О3			_	СО	
			kont.	grav.												_
	μg	/m³	μg/m³	μg/m³	μg/m³			l l		l	μg/m³	l			mg/m³	
Too	TMW	max HMW	TMW	TMW	max HMW	TMW	max 01-M	max HMW	max 08-M	max 8-MW	max 01-M	max 1-MW	max HMW	max 8-MW	max 01-M	max HMW
Tag	TIVIW	HMW		I IVI W					08-M	8-IVI W	U1-M	1-IVI VV	HMW	8-IVI W	U1-M	HMW
01. 02.			13 24		6 69	11 30	28 56	45 57								
03.			14		32	18	32	37								
04.			20		13	18	32	35								
05.			20		26	18	32	34								
06.			17		24	24	49	53								
So 07.			7		4	10	21	21								
08.			10		14	18	40	41								
09.			15		37	23	41	45								
10.			12		50	25	55	62								
11.			14		22	15	39	41								
12.			9		8	11	28	30								
13.			12		7	10	22	26								
So 14.			12		15	14	31	35								
15.			19		50	27	60	63								
16.			9		24	16	34	39								
17.			13		21	15	31	40								
18.			22		53	22	46	58								
19.			19		54	25	45	46								
20.			10		5	14 10	26 23	28 25								
So 21.			13		4 32	20	38	39								
22.			9		32 19	30	38 47	39 49								
24.			11		41	27	39	44								
25.			13		51	22	46	47								
26.			12		40	16	31	31								
27.			10		7	17	29	33								
So 28.			12		8	11	16	20								
29.			16		44	19	44	45								
30.			18		49	15	27	28								

	SO2	PM10	PM10	NO	NO2	03	СО
		kont.	grav.				
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage		30		30	30		
Verfügbarkeit		99%		98%	98%		
Max.HMW				69	63		
Max.01-M					60		
Max.3-MW					54		
Max.08-M							
Max.8-MW							
Max.TMW		24		13	30		
97,5% Perz.							
MMW		14	, in the second	5	18		
Gl.JMW	•				32		

Messstelle: WÖRGL / Stelzhamerstrasse


Anzahl der Tage mit Grenzwertüberschreitungen


Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte				0		
Grenzwerte menschliche Gesundheit		0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation				n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI R	Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert			0			


 $[\]ddot{U}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend) $\ddot{U}2)$ Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

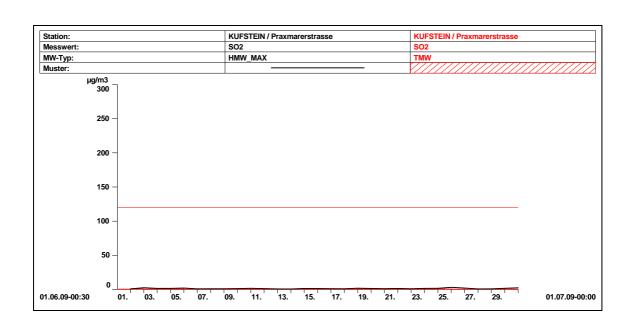
Messstelle: KUFSTEIN / Praxmarerstrasse

	SC)2	PM10	PM10	NO	_	NO2		_		03				СО	
			kont.	grav.					_							
	μg		μg/m³	μg/m³	μg/m³		μg/m³	l		l	μg/m³	l			mg/m³	I
T	TMW	max HMW	TMANY	TMANA	max	TMANY	max	max HMW	max 08-M	max 8-MW	max	max	max HMW	max 8-MW	max	max HMW
Tag			TMW	TMW	HMW	TMW	01-M		08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	1	1	11		7	11	19	19								
02.	1	2	19		82	31	58	59								
03.	1	2	12		49	22	47	51								
04.	1	2	20		14	24	55	64								
05.	1	2	19		56	20	42	45								
06.	1	1	13		17	22	44	45								
So 07.	0	1	7		26	13	28 32	31								
08. 09.	1	1	8 10		14 32	16 17	37	33 44								
10.	1	1 2	11		52	26	47	60								
10.	1	1	10		10	26 16	29	30								
12.	0	1	8		9	15	29	39								
13.	0	1	8 11		9	13	26	34								
So 14.	1	1	11		11	14	33	36								
15.	1	1	18		47	28	63	65								
16.	1	1	7		33	19	36	41								
17.	1	1	13		28	15	30	36								
18.	1	2	21		39	24	41	46								
19.	1	1	17		40	30	53	57								
20.	1	1	10		18	21	43	47								
So 21.	1	1	13		34	14	24	31								
22.	0	1	7		21	19	31	35								
23.	1	2	7		57	37	54	56								
24.	1	2	9		52	28	46	50								
25.	1	3	12		118	26	40	47								
26.	1	2	10		71	17	35	38								
27.	0	1	8		12	23	36	38								
So 28.	1	1	12		11	14	31	33								
29.	1	2	17		65	22	37	40								
30.	1	2	17		98	22	51	70								

	004	77.540	77.540	***	2704	0.0	
	SO2	PM10	PM10	NO	NO2	03	CO
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage	30	30		30	30		
Verfügbarkeit	98%	100%		98%	98%		
Max.HMW	3			118	70		
Max.01-M					63		
Max.3-MW	2				61		
Max.08-M							
Max.8-MW							
Max.TMW	1	21		21	37		
97,5% Perz.	1						
MMW	1	12		7	21		
GLIMW					30		

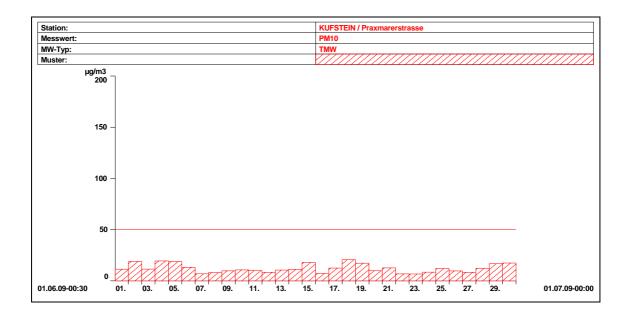
Messstelle: KUFSTEIN / Praxmarerstrasse

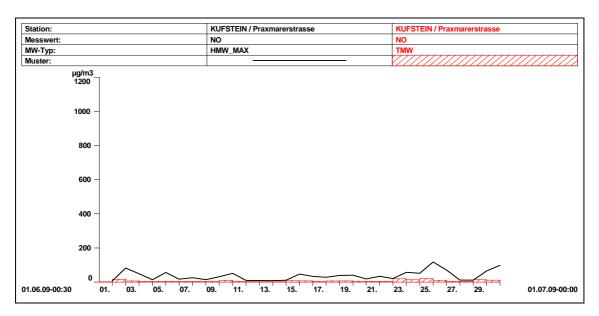
Anzahl der Tage mit Grenzwertüberschreitungen

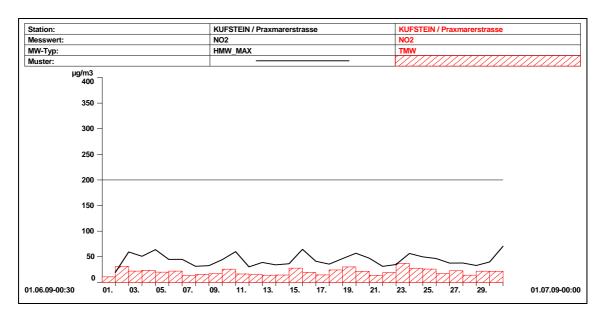

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	0		0		
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation	0			n.a.		

Ozongesetz												
Alarmschwelle												
Informationsschwelle												
langfristiger Zielwert menschliche Gesundheit												
2. VO gegen forstschädliche Luftverunreinigungen	0/0											

Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI Richtlinie)													
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				Ü1									
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				0									
ÖAW: SO2-Kriterium für Siedlungsgebiete	0												
VDI-RL 2310: NO-Grenzwert			0										


 $[\]ddot{\text{U}}1)$ Überschreitung des NO2-Grenzwertes gemäß ÖAW nur für den JMW (gleitend)


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.



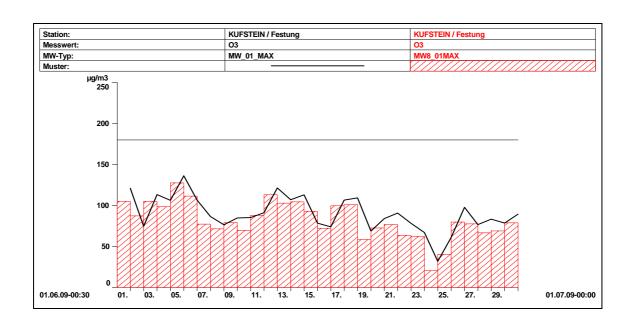
Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: KUFSTEIN / Festung

	SC)2	PM10	PM10	NO		NO2	_		_	03	_		_	co	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	μg/m³		$\mu g/m^3$			$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									105	105	121	121	122			
02.									87	87	75	77	80			
03.									105	105	113	115	117			
04.									98	100	106	106	107			
05.									128	128	136	137	137			
06.									111	114	106	107	107			
So 07.									77	77	86	86	88			
08.									71	71	77	77	80			
09.									79	79	85	86	87			
10.									70	71	85	85	87			
11.									88	89	91	92	92			
12.									113	113	121	124	125			
13.									103	105	107	107	107			
So 14.									104	104	113	114	114			
15.									93	94	78	80	85			
16.									72	72	74	77	77			
17.									100	100	107	107	108			
18.									101	101	109	109	109			
19.									58	64	69	69	70			
20.									73	73	84	84	87			
So 21.									77	77	91	91	93			
22.									63	63	78	78	84			
23.									62	62	67	67	67			
24.									20	20	32	32	34			
25.									40	40	61	61	63			
26.									80	80	98	98	102			
27.									78	78	77	78	79			
So 28.									67	67	83	83	86			
29.									69	69	79	79	84			
30.									79	79	89	89	93			

	SO2	PM10	PM10	NO	NO2	03	co
		kont.	grav.				
	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	mg/m³
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						137	
Max.01-M						136	
Max.3-MW							
Max.08-M							
Max.8-MW						128	
Max.TMW						87	
97,5% Perz.							
MMW				, in the second	-	54	
Gl.JMW							


Messstelle: KUFSTEIN / Festung

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					1	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlini	e)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					28	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					8	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Messstelle: LIENZ / Amlacherkreuzung

	SO)2	PM10	PM10	NO		NO2	_	_	03			_	CO		
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.	0	0		6	30	18	37	44						0.4	0.5	0.6
02.	1	2		14	111	43	81	95						0.6	0.7	0.8
03.	1	2		13	94	38	85	87						0.5	0.6	0.7
04.	1	3		17	109	38	76	82						0.4	0.5	0.6
05.	1	2		19	104	35	58	63						0.4	0.4	0.5
06.	1	1		11	73	31	60	63						0.5	0.5	0.7
So 07.	1	2		8	28	15	33	39						0.3	0.3	0.4
08.	1	2		17	118	36	69	73						0.4	0.6	0.6
09.	1	2		15	125	36	72	81						0.5	0.6	0.7
10.	1	2		12	101	33	58	82						0.4	0.5	0.5
11.	1	1		9	30	16	31	37						0.4	0.5	0.5
12.	1	2		10	98	43	91	97						0.7	0.9	1.2
13.	1	1		10	52	32	58	60						0.5	0.6	0.7
So 14.	1	2		14	41	23	61	64						0.4	0.5	0.7
15.	1	2		28	146	41	97	114						0.5	0.7	0.9
16.	1	2		14	87	31	67	76						0.4	0.6	0.6
17.	1	2		15	82	29	58	62						0.4	0.5	0.5
18.	1	3		37	155	37	67	75						0.5	0.6	0.7
19.	1	2		36	92	39	61	67						0.4	0.5	0.6
20.	1	1		16	37	23	38	40						0.4	0.4	0.5
So 21.	1	1		21	63	21	42	47						0.4	0.4	0.5
22.	1	10		32	109	35	60	68						0.4	0.5	0.5
23.	1	4		15	156	34	71	87						0.5	0.7	0.8
24.	1	3		15	165	35	69	72						0.5	0.7	0.7
25.	1	2		15	138	33	57	61						0.5	0.7	0.8
26.	1	2		12	103	28	64	80						0.5	0.6	0.6
27.	1	1		13	73	26	50	57						0.5	0.7	0.8
So 28.	1	1		12	48	23	40	46						0.5	0.5	0.6
29.	1	2		19	141	37	72	78						0.5	0.7	0.8
30.	1	2		17	132	34	75	100						0.5	0.6	0.6

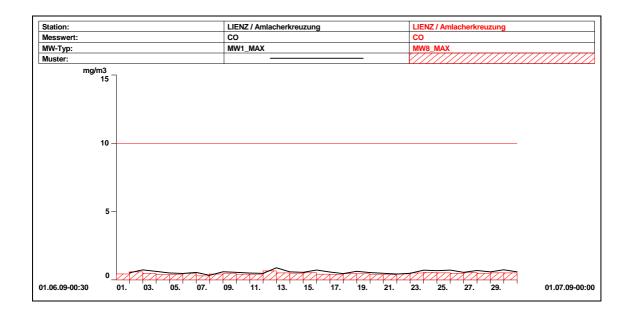
	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	$\mu g/m^3$	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³
Anz. Messtage	30		30	30	30		
Verfügbarkeit	98%		100%	98%	98%		99%
Max.HMW	10			165	114		
Max.01-M					97		0.9
Max.3-MW	5				91		
Max.08-M							
Max.8-MW							0.7
Max.TMW	1		37	50	43		
97,5% Perz.	2						
MMW	1		17	31	31		0.4
GLJMW					44		

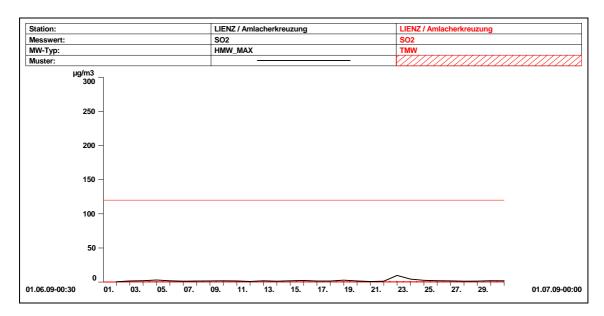
Messstelle: LIENZ / Amlacherkreuzung

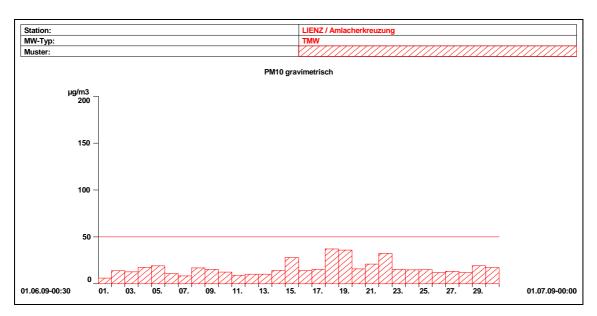
Anzahl der Tage mit Grenzwertüberschreitungen

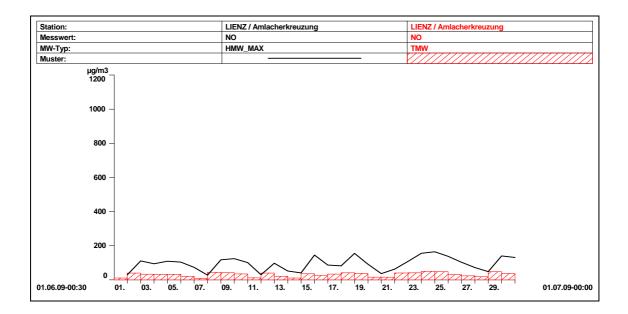
Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte	0			0		
Grenzwerte menschliche Gesundheit	0	0		0		0
Zielwerte menschliche Gesundheit		0		0		
Zielwerte Ökosysteme, Vegetation	0			n.a.		
Ozongesetz						
Alarmschwelle						
Informationsschwelle						
langfristiger Zielwert menschliche Gesundheit						
2. VO gegen forstschädliche Luftverunreinigungen	0/0					
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI I	Richtlin	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme				9		
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)				Ü1		
ÖAW: SO2-Kriterium für Siedlungsgebiete	0					

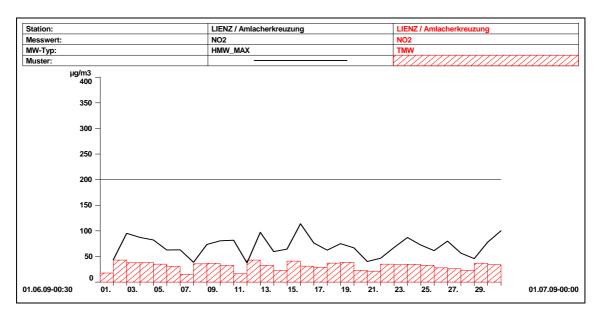
 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)


VDI-RL 2310: NO-Grenzwert


0


Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

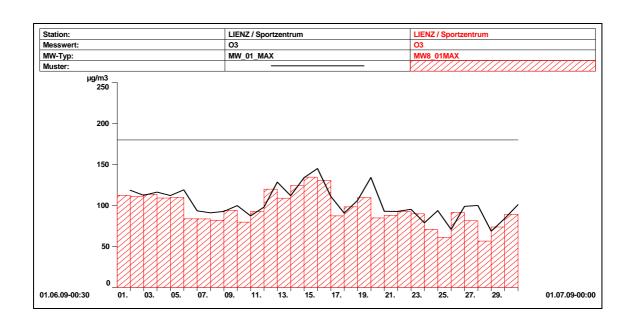

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.


¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

 $Messstelle: \quad LIENZ \, / \, Sportzentrum$

	SC	02	PM10	PM10	NO		NO2				03				co	
			kont.	grav.												
	μg	/m³	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$		$\mu g/m^3$				$\mu g/m^3$				mg/m³	
		max			max		max	max	max	max	max	max	max	max	max	max
Tag	TMW	HMW	TMW	TMW	HMW	TMW	01-M	HMW	08-M	8-MW	01-M	1-MW	HMW	8-MW	01-M	HMW
01.									112	112	119	119	120			
02.									111	111	112	113	114			
03.									113	114	116	116	117			
04.									109	109	112	113	114			
05.									110	110	119	119	120			
06.									84	84	94	94	94			
So 07.									84	84	91	95	98			
08.									82	82	93	93	95			
09.									94	94	100	100	101			
10.									80	80	87	87	89			
11.									93	93	98	100	100			
12.									120	120	129	129	129			
13.									109	109	112	113	115			
So 14.									124	124	134	135	136			
15.									135	135	145	146	146			
16.									131	129	111	111	113			
17.									87	87	91	91	91			
18.									98	98	106	108	110			
19.									110	110	134	134	136			
20.									85	85	93	95	98			
So 21.									88	88	93	93	93			
22.									92	92	95	96	97			
23.									90	90	79	82	82			
24.									71	71	94	94	96			
25.									61	61	71	71	73			
26.									92	92	99	99	102			
27.									81	81	100	100	103			
So 28.									57	57	69	69	72			
29.									74	74	84	84	85			
30.									89	90	101	101	103			

	SO2	PM10	PM10	NO	NO2	03	со
		kont.	grav.				
	$\mu g/m^3$	mg/m³					
Anz. Messtage						30	
Verfügbarkeit						98%	
Max.HMW						146	
Max.01-M						145	
Max.3-MW							
Max.08-M							
Max.8-MW						135	
Max.TMW						96	
97,5% Perz.							
MMW						64	
Gl.JMW							


Messstelle: LIENZ / Sportzentrum

Anzahl der Tage mit Grenzwertüberschreitungen

Beurteilungsgrundlage	SO2	PM10 1)	NO	NO2	03	CO
IG-Luft						
Warnwerte						
Grenzwerte menschliche Gesundheit						
Zielwerte menschliche Gesundheit						
Zielwerte Ökosysteme, Vegetation						
Ozongesetz						
Alarmschwelle					0	
Informationsschwelle					0	
langfristiger Zielwert menschliche Gesundheit					3	
2. VO gegen forstschädliche Luftverunreinigungen						
Wirkungsbezogene Grenzwerte (ÖAW = Österreichische Akademie der Wissenschaften, VDI	[Richtlini	ie)				
ÖAW: Zielvorstellungen Pflanzen, Ökosysteme					29	
ÖAW: Richtwerte Mensch, Vegetation (nur NO2)					11	
ÖAW: SO2-Kriterium für Siedlungsgebiete						
VDI-RL 2310: NO-Grenzwert						

 $[\]ddot{\text{U}}1)$ $\ddot{\text{U}}\text{berschreitung}$ des NO2-Grenzwertes gemäß $\ddot{\text{O}}\text{AW}$ nur für den JMW (gleitend)

¹⁾ An den Stationen Imst/Imsterau, Imst/A12, Innsbruck/Andechsstrasse, Innsbruck/Fallmerayerstrasse, Hall/Sportplatz, Vomp/Raststätte A12, Brixlegg/Innweg, Kramsach/Angerberg und Lienz/Amlacherkreuzung wird PM10 bzw. PM2.5 gravimetrisch gemessen.

Ü2) Überschreitung des 97,5 Perzentils gemäß 2. VO gegen forstschädliche Luftverunreinigungen

n.a.) Nicht ausgewertet, da der Zielwert nur für Vegetationsmessstellen gilt.

Beurteilungsunterlagen:

A. Inländische Grenzwerte

I. Immissionsschutzgesetz-Luft (BGBl. I Nr. 115/1997 i.d.g.F.)

a) Schutz der menschlichen Gesundheit

Gr	Grenzwerte in μg/m³ (ausgenommen CO: angegeben in mg/m³)								
Luftschadstoff	HMW	MW3	MW8	TMW	JMW				
Schwefeldioxid	200 *)			120					
Kohlenmonoxid			10						
Stickstoffdioxid	200				30 **)				
PM_{10}				50 ***)	40				
	Aları	nwerte in μg/m³							
Schwefeldioxid		500							
Stickstoffdioxid		400							
	Zielwerte in µg/m³								
Stickstoffdioxid				80					
PM_{10}				50	20				

b) Schutz der Ökosysteme und der Vegetation (BGBl. II Nr. 298/2001 i.d.g.F.)

Grenzwerte in μg/m³								
Luftschadstoff	HMW	MW3	MW8	TMW	JMW			
Schwefeldioxid					201)			
Stickstoffoxide					30			
	Zielwerte in µg/m³							
Schwefeldioxid				50				
Stickstoffdioxid				80				
1) für das Kalenderjahr und Winterhalbjahr (1.0	Oktober bis 31.März)		•				

II. Ozongesetz 1992: (BGBl. I Nr. 210/1992 i.d.g.F.)

Informationsschwelle	180 μg/m³ als Einstundenmittelwert (stündlich gleitend)					
Alarmschwelle	240 μg/m³ als Einstundenmittelwert (stündlich gleitend)					
Zielwert	120 μg/m³ als Achtstundenmittelwert *)					
*) Dieser Wert darf im Mittel über drei Jahre an nicht mehr als 25 Tagen pro Kalenderjahr überschritten werden und gilt ab 2010.						

III. Zweite Verordnung gegen forstschädliche Luftverunreinigungen: (BGBl. Nr. 199/1984 i.d.g.F.)

 ^{*)} Drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte pro Kalenderjahr bis zu einer Konzentration von 350 μg/m³ gelten nicht als Überschreitung.
 **) Der Immissionsgrenzwert von 30 μg/m³ ist ab 1. Jänner 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m³ bei In-Kraft-Treten dieses Bundesgesetzes und wird am 1. Jänner jedes Jahres bis 1. Jänner 2005 um 5 μg/m³ verringert. Die Toleranzmarge von 10 μg/m³ gilt gleich bleibend von 1. Jänner 2005 bis 31. Dezember 2009. Die Toleranzmarge von 5 $\mu g/m^3$ gilt gleich bleibend von 1. Jänner 2010 bis 31. Dezember 2011.

^{***)} Pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: ab In-Kraft-Treten des Gesetzes bis 2004: 35; von 2005 bis 2009: 30; ab 2010: 25.

§ 4 (1) Als Höchstanteile im Sinne des § 48 lit.b des Forstgesetzes 1975, die nach dem Stand der wissenschaftlichen Erkenntnisse und der Erfahrung noch nicht zu einer der Schadenanfälligkeit des Bewuchses entsprechenden Gefährdung der Waldkultur führen (wirkungsbezogene Immissionsgrenzwerte, gemessen an der Empfindlichkeit der Fichte), werden bei Messungen in der Luft festgesetzt:

Schwefeldioxid (SO ₂)								
	April - Oktober	November - März						
97,5 Perzentil für den Halbstundenmittelwert	0,07 mg/m³	0,15 mg/m³						
(HMW) in den Monaten								
Die zulässige Überschreitung des Grenzwertes, die sich aus der Perzentilregelung ergibt, darf höchstens 100% des Grenzwertes betragen.								
Tagesmittelwert (TMW)	0,05 mg/m ³	0,10 mg/m³						
Halbstundenmittelwert (HMW)	0,14 mg/m³	0,30 mg/m³						

IV. Empfehlungen der Österreichischen Akademie der Wissenschaften, Kommission für die Reinhaltung der Luft:

Nov. 1998: Luftqualitätskriterien Stickstoffdioxid (NO_2)				August 1989: Luftqualitätskriterien Ozon (O ₃)					
Wirkungsbezogene Immissionsgrenzkonzentrationen für NO_2 in mg/m^3			Wirkungsbezogene Immissionsgrenzkonzentrationen für O_3 in mg/m^3						
	HMW	TMW	JMW		HMW	1MW	8MW	Vegetations- periode *)	
zum Schutz des Menschen	0,200	0,080	0,030	zum Schutz des Menschen	0,120	-	0,100	-	
zum Schutz der Vegetation	0,200	0,080	0,030	zum Schutz der Vegetation (einschließlich empfindlicher Pflanzenarten)	0,300	0,150	0,060	0,060	
Zielvorstellungen zum Schutz der Ökosysteme	0,080	0,040	0,010						

Die höchstzulässige Konzentration von Schwefeldioxid (SO_2) in der freien Luft beträgt								
	in Erholun	gsgebieten	in allgemeinen Siedlungsgebieten					
		Schwefeldioxid	d in mg/m³ Luft					
	April - Oktober November – März							
Tagesmittelwert	0,05	0,10	0,20					
Halbstundenmittelwert	0,07	0,15	0,20					
			Die Überschreitung dieses Halbstundenmittelwertes dreimal pro Tag bis höchstens 0,50 mg/m³ gilt nicht als Luftbeeinträchtigung.					

B. Ausländische Grenzwerte, wo keine österreichischen vorhanden sind

V. VDI-Richtlinie 2310:

Grenzwerte für Stickstoffmonoxid (NO)						
Tagesmittelwert	500 μg/m³					
Halbstundenmittelwert	1000 μg/m³					

IG-L Überschreitungen:

PM10 Staub

PM10 kontinuierlich

IG-L Grenzwertüberschreitungen im Zeitraum 01.06.09-00:30 - 01.07.09-00:00
Tagesmittelwerte > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

PM10 gravimetrisch

IG-L Grenzwertüberschreitungen im Zeitraum 01.06.09-00:30 - 01.07.09-00:00 Tagesmittelwerte > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

HALL IN TIROL / Sportplatz

05.06.2009 60

Anzahl: 1

STICKSTOFFDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.06.09-00:30 - 01.07.09-00:00
Halbstundenmittelwert > 200µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Alarmwertüberschreitungen im Zeitraum 01.06.09-00:30 - 01.07.09-00:00 Dreistundenmittelwert > 400µg/m3

MESSSTELLE Datum WERT[µg/m3]

IG-L Zielwertüberschreitungen im Zeitraum 01.06.09-00:30 - 01.07.09-00:00

Tagesmittelwert > 80µg/m3

 ${\tt MESSSTELLE} \qquad \qquad {\tt Datum} \qquad {\tt WERT[\mu g/m3]}$

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

SCHWEFELDIOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.06.09-00:30 - 01.07.09-00:00 Halbstundenmittelwert > 200µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Alarmwertüberschreitungen im Zeitraum 01.06.09-00:30 - 01.07.09-00:00
Dreistundenmittelwert > 500µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

ÖKOSYSTEME / VEGETATION Zielwertüberschreitungen im Zeitraum 01.06.09-00:30 - 01.07.09-00:00

Tagesmittelwert > 50µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

IG-L Grenzwertüberschreitungen im Zeitraum 01.06.09-00:30 - 01.07.09-00:00 Tagesmittelwert > $120 \mu g/m3$

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

KOHLENMONOXID

IG-L Grenzwertüberschreitungen im Zeitraum 01.06.09-00:30 - 01.07.09-00:00
Achtstundenmittelwert > 10mg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

OZON

Überschreitungen der Alarmschwelle lt. Ozongesetz im Zeitraum 01.06.09-00:30 - 01.07.09-00:00

Einstundenmittelwert > 240µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Überschreitungen der Informationsschwelle lt. Ozongesetz im Zeitraum 01.06.09-00:30 - 01.07.09-00:00

Einstundenmittelwert > 180µg/m3

MESSSTELLE Datum WERT[µg/m3]

Im Berichtszeitraum wurden keine Überschreitungen festgestellt!

Zielwertüberschreitungen lt. Ozongesetz im Zeitraum 01.06.09-00:30 - 01.07.09-00:00

Achtstundenmittelwert > 120µg/m3

MESSSTELLE	Datum	WERT[µg/m3]	
HÖFEN / Lärchbichl Anzahl: 1	05.06.2009-	-24:00 125	
KARWENDEL West KARWENDEL West KARWENDEL West Anzahl: 3	02.06.2009- 05.06.2009- 06.06.2009-	-24:00 123	
INNSBRUCK / Sadrach Anzahl: 1	05.06.2009-	-24:00 122	

NORDKETTE NORDKETTE NORDKETTE NORDKETTE NORDKETTE NORDKETTE NORDKETTE NORDKETTE ANZAhl: 8	02.06.2009-24:00 04.06.2009-24:00 05.06.2009-24:00 06.06.2009-24:00 12.06.2009-24:00 15.06.2009-24:00 16.06.2009-24:00 19.06.2009-24:00	122 125 126 125 121 136 136 129
ZILLERTALER ALPEN ZILLERTALER ALPEN ZILLERTALER ALPEN ZILLERTALER ALPEN ZILLERTALER ALPEN ZILLERTALER ALPEN Anzahl: 6	05.06.2009-24:00 06.06.2009-24:00 15.06.2009-24:00 16.06.2009-24:00 20.06.2009-24:00 27.06.2009-24:00	127 132 131 132 125 127
KRAMSACH / Angerberg Anzahl: 1	05.06.2009-24:00	121
KUFSTEIN / Festung Anzahl: 1	05.06.2009-24:00	128
LIENZ / Sportzentrum LIENZ / Sportzentrum LIENZ / Sportzentrum Anzahl: 3	14.06.2009-24:00 15.06.2009-24:00 16.06.2009-24:00	124 135 131